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Q1. [10 pts] Search: Algorithms

Consider the state space search problem shown to
the right. A is the start state and the shaded states
are goals. Arrows encode possible state transitions,
and numbers by the arrows represent action costs.
Note that state transitions are directed; for example,
A — B is a valid transition, but B — A is not.
Numbers shown in diamonds are heuristic values that
estimate the optimal (minimal) cost from that node
to a goal.
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For each of the following search algorithms, write down the nodes that are removed from fringe in the course of the
search, as well as the final path returned. Because the original problem graph is a tree, the tree and graph versions
of these algorithms will do the same thing, and you can use either version of the algorithms to compute your answer.

Assume that the data structure implementations and successor state orderings are all such that ties are broken
alphabetically. For example, a partial plan S — X — A would be expanded before S — X — B; similarly,
S — A — Z would be expanded before S —+ B — A.

(a) [2 pts] Depth-First Search (ignores costs)

(b)

(c)

(d)

(e)

Nodes removed from fringe:

Path returned: A, B, F

A, B, EF

[2 pts] Breadth-First Search (ignores costs)

Nodes removed from fringe:

Path returned: A, D

[2 pts] Uniform-Cost Search

Nodes removed from fringe:

Path returned: A, C, G

[2 pts] Greedy Search

Nodes removed from fringe:

Path returned: A, D

[2 pts] A* Search

Nodes removed from fringe:

Path returned: A, C, G

A,B,C,D

A, C, B, G



Q2. [6 pts] Search: Heuristic Function Properties

For the following questions, consider the search problem shown on the left. It has only three states, and three
directed edges. A is the start node and G is the goal node. To the right, four different heuristic functions are defined,
numbered I through IV.

L(A) h(B) h(G)
I | 4 1 0
M| 5 4 0
| 4 3 0
V| 5 2 0

(a) [4 pts] Admissibility and Consistency

For each heuristic function, circle whether it is admissible and whether it is consistent with respect to the
search problem given above.

Admissible? Consistent?
I Yes No Yes
II Yes Yes
III Yes No Yes No
v Yes No Yes

IT is the only inadmissible heuristic, as it overestimates the cost from B: h(B) = 4, when the actual cost to G is 3.

To check whether a heuristic is consistent, ensure that for all paths, h(N) — h(L) < path(N — L), where N and L
stand in for the actual nodes. In this problem, h(G) is always 0, so making sure that the direct paths to the goal
(A — G and B — G) are consistent is the same as making sure that the heuristic is admissible. The path from A to
B is a different story.

—1=3X path(A — B) =2.

4 — 3—1<2
)=5-2=3%2

Heuristic I is not consistent: h(A) — h(B
Heuristic IIT is consistent: h(A) — h(B)
Heuristic IV is not consistent: h(A) — h

)
(B
(b) [2 pts] Function Domination

Recall that domination has a specific meaning when talking about heuristic functions.

Circle all true statements among the following.

1. Heuristic function III dominates IV.

2. Heuristic function IV dominates III.

3. ’ Heuristic functions IIT and IV have no dominance relationship.

4. Heuristic function I dominates IV.

5. ’ Heuristic function IV dominates I.

6. Heuristic functions I and IV have no dominance relationship.

For one heuristic to dominate another, all of its values must be greater than or equal to the corresponding
values of the other heuristic. Simply make sure that this is the case. If it is not, the two heuristics have no
dominance relationship.



Q3. |8 pts] Search: Slugs

You are once again tasked with planning ways to get various insects out of a maze. This time, it’s slugs! As shown
in the diagram below to the left, two slugs A and B want to exit a maze via their own personal exits. In each time
step, both slugs move, though each can choose to either stay in place or move into an adjacent free square. The slugs
cannot move into a square that the other slug is moving into. In addition, the slugs leave behind a sticky, poisonous
substance and so they cannot move into any square that either slug has ever been in. For example, if both slugs
move right twice, the maze is as shown in the diagram below to right, with the z squares unpassable to either slug.

~

i) x

You must pose a search problem that will get them to their exits in as few time steps as possible. You may assume
that the board is of size N by M; all answers should hold for a general instance, not simply the instance shown
above. (You do not need to generalize beyond two slugs.)

(a) [3 pts] How many states are there in a minimal representation of the space? Justify with a brief description of
the components of your state space.

OMN (N[ N2
9MN

The state includes a bit for each of the M N squares, indicating whether the square has been visited ( possibili-

ties). It also includes the locations of each slug (M N possibilities for each of the two slugs).

(b) [2 pts] What is the branching factor? Justify with a brief description of the successor function.
5 x 5 = 25 for the first time step, 4 x 4 = 16 afterwards.
At the start state each slug has at most five possible next locations (North, South, East, West, Stay). At all future
time steps one of those options will certainly be blocked off by the snail’s own trail left at the previous time step.

Only 4 possible next locations remain.

We accepted both 25 and 16 as correct answers.

(c) [3 pts] Give a non-trivial admissible heuristic for this problem.
max(maze distance of bug A to its exit, maze distance of bug B to its exit)

Many other correct answers are possible.



Q4. 10 pts] Value Functions

Consider

a general search problem defined by:

o A set of states, S.

A start state sg.

A set of goal states G, with G C S.

e A successor function Succ(s) that gives the set of states s’ that you can go to from the current state s.

For each successor s’ of s, the cost (weight) W (s, s’) of that action.

As usual, the search problem is to find a lowest-cost path from the state state sy to a goal g € G. You may assume
that each non-goal state has at least one successor, that the weights are all positive, and that all states can reach a

goal.
Define C
Clg)=0

(s) to be the optimal cost of the state s; that is, the lowest-cost path from s to any goal. For g € G, clearly

(a) [4 pts] Write a Bellman-style (one-step lookahead) equation that expresses C(s) for a non-goal s in terms of

the

optimal costs of other states.

C(s) = min (W (s,s") + C(s)]

s’€Suce(s)

(b) [2 pts] Consider a heuristic function h(s) with h(s) > 0. What relation must hold between h(s) and C(s) for

h(s

h(s) <C

) to be an admissible heuristic? (Your answer should be a mathematical expression.)

(s),Vs €S

(c) [4 pts] By analogy to value iteration, define Ci(s) to be the minimum cost of any plan starting from s that is
either length k or reaches a goal in at most k actions. Imagine we use C} as a heuristic function.

Circle all true statement(s) among the following:

1
2

=~

10

. Ci(s) might be inadmissible for any given value of k.

. ’ C(s) is admissible for all k. ‘ If there is a goal reachable within & actions, then Cy(s) gives the exact cost

to the nearest such goal. If all goals require plans of longer than & to reach, then the cheapest plan of
length k£ underestimates the true cost.

. Ci(s) is only guaranteed to be admissible if k exceeds the length of the shortest (in steps) optimal path
from a state to a goal.

Ck(s) is only guaranteed to be admissible if k exceeds the length of the longest (in steps) optimal path
from a state to a goal.

. ’C(s) (the optimal costs) are admissible.

. Ci(s) might be inconsistent for any given value of k.

’C’k(s) is consistent for all k. ‘ Moving from s to a successor s’ decreases Cj by at most Wi(s,s’). Since

the heuristic value decreases by at most the cost of the transition, the heuristic is consistent.

. C(s) is only guaranteed to be consistent if k exceeds the length of the shortest (in steps) optimal path
from a state to a goal.

. Ci(s) is only guaranteed to be consistent if k exceeds the length of the longest (in steps) optimal path
from a state to a goal.

. ’ C(s) (the optimal costs) are consistent.




Q5. |9 pts] CSPs: Apple’s New Campus

Apple’s new circular campus is nearing completion. Unfortunately, the chief architect on the project was using
Google Maps to store the location of each individual department, and after upgrading to iOS 6, all the plans for the
new campus were lost!

The following is an approximate map of the campus:

South

The campus has six offices, labeled 1 through 6, and six departments:

Legal (L)

Maps Team (M)
Prototyping (P)
Engineering (E)

Tim Cook’s office (T)
Secret Storage (S)

Offices can be next to one another, if they share a wall (for an instance, Offices 1-6). Offices can also be across from
one another (specifically, Offices 1-4, 2-5, 3-6).

The Electrical Grid is connected to offices 1 and 6. The Lake is visible from offices 3 and 4. There are two “halves”
of the campus — South (Offices 1-3) and North (Offices 4-6).

The constraints are as follows:

ii.
iii.

iv.

vi.

vii.

viii.

L)egal wants a view of the lake to look for prior art examples.
T)im Cook’s office must not be across from (M)aps.

P)rototyping must have an electrical connection.

E)ngineering must be across from (T)im Cook’s office.
)

(

(

(

(S)ecret Storage must be next to (E)ngineering.

(

(P)rototyping and (L)egal cannot be next to one another.
(

P)rototyping and (E)ngineering must be on opposite sides of the campus (if one is on the North side, the other
must be on the South side).

No two departments may occupy the same office.

This page is repeated as the second-to-last page of this midterm for you to rip out and use for reference
as you work through the problem.



(a) [3 pts] Constraints. Note: There are multiple ways to model constraint viii. In your answers below, assume
constraint viii is modeled as multiple pairwise constraints, not a large n-ary constraint.

(i) [1 pt] Circle your answers below. Which constraints are unary?

i [l w v v v wii

(ii) [1 pt] In the constraint graph for this CSP, how many edges are there?

Stra WA LS aC. C I'lc S, U C = 19 S C S.
Constraint vii connects each pair of variables; there are (5 15 such pairs

(iii) [1 pt] Write out the explicit form of constraint 4ii.
Pe{1,6}

(b) [6 pts] Domain Filtering. We strongly recommend that you use a pencil for the following problems.

(i) [2 pts] The table below shows the variable domains after unary constraints have been enforced and the
value 1 has been assigned to the variable P.

Cross out all values that are eliminated by running Forward Checking after this assignment.
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(ii) [4 pts] The table below shows the variable domains after unary constraints have been enforced, the value
1 has been assigned to the variable P, and now the value 3 has been assigned to variable T
Cross out all values that are eliminated if arc consistency is enforced after this assignment. (Note that
enforcing arc consistency will subsume all previous pruning.)
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Q6. [7 pts] CSPs: Properties

(a)

(b)

(c)

(d)

(e)

[1 pt] When enforcing arc consistency in a CSP, the set of values which remain when the algorithm terminates
does not depend on the order in which arcs are processed from the queue.

False

[1 pt] In a general CSP with n variables, each taking d possible values, what is the maximum number of
times a backtracking search algorithm might have to backtrack (i.e. the number of the times it generates an
assignment, partial or complete, that violates the constraints) before finding a solution or concluding that none
exists? (circle one)

0 0(1) O(nd?) O(n%d?) o(d™) 0

In general, the search might have to examine all possible assignments.

[1 pt] What is the maximum number of times a backtracking search algorithm might have to backtrack in a
general CSP, if it is running arc consistency and applying the MRV and LCV heuristics? (circle one)

0 0(1) O(nd?) O(n%d?) o(d") 00
The MRV and LCV heuristics are often helpful to guide the search, but are not guaranteed to reduce back-
tracking in the worst case.

In fact, CSP solving is NP-complete, so any polynomial-time method for solving general CSPs would consititute
a proof of P = NP (worth a million dollars from the Clay Mathematics Institute!).

[1 pt] What is the maximum number of times a backtracking search algorithm might have to backtrack in a
tree-structured CSP, if it is running arc consistency and using an optimal variable ordering? (circle one)

[0] O(1) O(nd?) O(n2d?) o(d") 00
Applying arc consistency to a tree-structured CSP guarantees that no backtracking is required, if variables are

assigned starting at the root and moving down towards the leaves.

[3 pts] Constraint Graph Consider the following constraint graph:

In two sentences or less, describe a strategy for efficiently solving a CSP with this constraint structure.

Loop over assignments to the variable in the middle of the constraint graph. Treating this node as a cutset,
the graph becomes four independent tree-structured CSPs, each of which can be solved efficiently.



Q7. [8 pts] Games: Alpha-Beta Pruning

For each of the game-trees shown below, state for which values of x the dashed branch with the scissors will be
pruned. If the pruning will not happen for any value of x write “none”. If pruning will happen for all values of x
write “all”.

—

We are assuming that nodes are evaluated left to right and
ties are broken in favor of the latter nodes. A different

\X evaluation order would lead to different interval bounds,
AR while a different tie breaking strategies could lead to strict

X 3 inequalities (> instead of >).
Successor enumeration order and tie breaking rules typi-

cally impact the efficiency of alpha-beta pruning.
(a) Example Tree. Answer: x < 1.

A

S 5
8 4
\
>
AN
6 x 5 x 2
(b) Tree 1. Answer: None (c) Tree 2. Answer: = > 2
2 4 5
4 X 3 \
X
\
1 5 X 1

(d) Tree 3. Answer: = > 3, (e) Tree 4. Answer: None

10



Q8. |18 pts] Utilities: Low/High

After a tiring day of eating food and escaping from ghosts, Pacman heads to the casino for some well-deserved rest
and relaxation! This particular casino has two games, Low and High, which are both free to play.

The two games are set up very similarly. In each game, there is a bin of marbles. The Low bin contains 5 white and
5 dark marbles, and the High bin contains 8 white and 2 dark marbles:

® O QO
o000 | |05
coee| |oOCoe

Low High
$100 $1000

Play for each game proceeds as follows: the dealer draws a single marble at random from the bin. If a dark marble
is drawn, the game pays out. The Low payout is $100, and the High payout is $1000. The payout is divided evenly
among everyone playing that game. For example, if two people are playing Low and a dark marble is drawn, they each
receive $50. If a white marble is drawn, they receive nothing. The drawings for both games are done simultaneously,
and only once per night (there is no repeated play).

(a) [2 pts] Expectations. Suppose Pacman is at the casino by himself (there are no other players). Give his
expected winnings, in dollars:

(i) [1 pt] From playing a single round of Low: - - $100 + - - $0 = $50
.o . . . ) Q @
(ii) [1 pt] From playing a single round of High: -5 - $1000 + -3 - $0 = $200
(b) [6 pts] Preferences. Pacman is still at the casino by himself. Let p denote the amount of money Pacman

wins, and let his utility be given by some function U(p). Assume that Pacman is a rational agent who acts to
maximize expected utility.

(i) [3 pts] If you observe that Pacman chooses to play Low, which of the following must be true about U(p)?
Assume U(0) = 0. (circle any that apply)

U(50) > U(1000) U(100) > U(1000)
Review Axioms of Rationality.
%U(IOO) > f—OU(lOOO) v U(50) > U(100)

ii) [3 pts] Given that Pacman plays Low, which of the following are possibilities for U(p)? You may use
g
+/100 ~ 4.6, although this question should not require extensive calculation. (circle any that apply)

P —pv 2v —1 » pv

Check whether the response you gave for the previous question applies to these functions.

11



Outcome of High:

Outcome of Low:
Probability:

p:
m:

100
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Figure 1: Game tree for Low/High as played by Pacman and Ms. Pacman.

(c) [10 pts] Multiple Players. Ms. Pacman is joining Pacman at the casino! Assume that Pacman arrives first
and chooses which game he will play, and then Ms. Pacman arrives and chooses which game she will play. Let
p denote Pacman’s winnings and m denote Ms. Pacman’s winnings. Since both Pacman and Ms. Pacman are
rational agents, we can describe Pacman’s utility with a function U;(p,m) and Ms. Pacman’s utility with a

function Us(p,m). You might find it helpful to refer to the game tree given in Figure 1.

(i) [6 pts] Suppose Ui (p,m) = p and Us(p, m) = m; that is, both players are attempting to maximize their
own expected winnings. Compute the expected utilities of both players, for each combination of games

they could play:

Pacman | Ms. Pacman | E[U;(p, m)] E[Uz(p, m)]
25
Low Low 25
200
Low High 50
50
High Low 200
100
High High 100

Recall that both games pay out only once, so if Mr. and Ms. Pacman play the same game, then the have

to split the payout.

Given that Pacman chooses first, which of the following are possibilities for the games Pacman and Ms.

Pacman respectively choose to play? (circle all that apply)

You would model the problem as a minimax game tree since Mr. Pacman knows Ms. Pacman’s utility.

(Low, Low)

(Low, High)

12

(High, Low)

(High, High)



(ii) [4 pts] Scenarios. Now rather than simply maximizing their own winnings, Pacman and Ms. Pacman
have different objectives. Here are five utility functions U;(p, m) for Pacman:

P p+m m (p +m)? -m
and five utility functions Us(p, m) for Ms. Pacman:

m p+m —p 2m —p log,om

For each of the following scenarios, give the utility functions listed above which best encode the motivations
of each player. A particular function may appear more than once. The first scenario is done for you.

Pacman Mrs. Pacman Scenario

p m Pacman and Ms. Pacman each want to maximize their own ex-
pected winnings.

-m -p Pacman and Ms. Pacman have had a terrible fight and are very
angry at each other. Each wants the other to lose as much money
as possible.

p+m m Pacman has gotten over the fight, and now wants to maximize their
expected combined winnings (since Pacman and Ms. Pacman share
a bank account). However, Ms. Pacman does not trust Pacman to
deposit his share, so she just wants to maximize her own expected
winnings.

m m Pacman is being extorted by the Ghost Mafia, who will immedi-
ately confiscate any money that he wins (that is, if Pacman wins
$100, he will still have p = 100 but does not actually get to keep the
money). The Mafia is not monitoring Ms. Pacman and does not
know about her winnings, so they will not be confiscated. Both
Pacman and Ms. Pacman want to maximize the expected total
amount the couple gets to keep.

13



Q9. |24 pts] MDPs and RL: Mini-Grids

The following problems take place in various scenarios of the gridworld MDP (as in Project 3). In all cases, A is the
start state and double-rectangle states are exit states. From an exit state, the only action available is Fxit, which
results in the listed reward and ends the game (by moving into a terminal state X, not shown).

From non-exit states, the agent can choose either Left or Right actions, which move the agent in the corresponding
direction. There are no living rewards; the only non-zero rewards come from exiting the grid.

Throughout this problem, assume that value iteration begins with initial values Vj(s) = 0 for all states s.

First, consider the following mini-grid. For now, the discount is v = 1 and legal movement actions will always succeed
(and so the state transition function is deterministic).

+1 A +10

(a) [1 pt] What is the optimal value V*(A)?
10

Since the discount 7 = 1 and there are no rewards for any action other than exiting, a policy that simply heads to
the right exit state and exits will accrue reward 10. This is the optimal policy, since the only alternative reward if
1, and so the optimal value function has value 10.

(b) [1 pt] When running value iteration, remember that we start with Vj(s) = 0 for all s. What is the first iteration
k for which Vi (A) will be non-zero?

2

The first reward is accrued when the agent does the following actions (state transitons) in sequence: Left, Exit. Since
two state transitions are necessary before any possible reward, two iterations are necessary for the value function to
become non-zero.

(c) [1 pt] What will V;(A) be when it is first non-zero?

1
As explained above, the first non-zero value function value will come from exiting out of the left exit cell, which
accrues reward 1.

(d) [1 pt] After how many iterations k will we have Vj,(A) = V*(A4)? If they will never become equal, write never.

4
The value function will equal the optimal value function when it discovers this sequence of state transitions: Right,
Right, Right, Exit. This will obviously happen in 4 iterations.

Now the situation is as before, but the discount -y is less than 1.
(e) [2 pts] If ¥ = 0.5, what is the optimal value V*(A4)?

The optimal policy from A is Right, Right, Right, Exit. The rewards accrued by these state transitions are: 0, 0, 0,
10. The discount values are 7°,y*,~4%, 4%, which is 1, 3, %, £. Therefore, V*(4) =0+ 040+ 4.

(f) [2 pts] For what range of values 7 of the discount will it be optimal to go Right from A? Remember that
0 <~ < 1. Write all or none if all or no legal values of v have this property.

The best reward accrued with the policy of going left is 4! * 1. The best reward accrued with the policy of going
right is 3 * 10. We therefore have the inequality 10y3 > +, which simplifies to v > 1/1/10. The final answer is

1/VI0<y <1

14



Let’s kick it up a notch! The Left and Right movement actions are now stochastic and fail with probability f. When
an action fails, the agent moves up or down with probability f/2 each. When there is no square to move up or down
into (as in the one-dimensional case), the agent stays in place. The Ezit action does not fail.

For the following mini-grid, the failure probability is f = 0.5. The discount is back to v = 1.

A +10

(g) [1 pt] What is the optimal value V*(A)?
10. Same reasoning as for the previous problem.
(h) [1 pt] When running value iteration, what is the smallest value of k for which Vj(A) will be non-zero?

4. Same reasoning as for the previous problem, but now the only reward-accruing sequence of actions is Left, Left,
Left, Exit.

(i) [1 pt] What will V},(A) be when it is first non-zero?

10/8. Although ~ = 1, the probability that the agent succesfully completes the sequence of actions that leads to a
reward at k = 4 (Left, Left, Left, Exit) is only % X % X % = %, as at each non-Exit step it has only a % probability
of success.

(3) [1 pt] After how many iterations k will we have Vj,(A) = V*(A)? If they will never become equal, write never.
Never. There is always only a % probability of success on any movement action, so while Vj, will asymptotically
approach V*, it won’t ever equal it. Consider the square right next to the exit, which we’ll call C: Vj41(C) =

310+ 3V (C).

Now consider the following mini-grid. Again, the failure probability is f = 0.5 and v = 1. Remember that failure
results in a shift up or down, and that the only action available from the double-walled exit states is Fxit.

0 0 0

(k) [1 pt] What is the optimal value V*(A4)?
1/8. Same reasoning as for the previous problem. Note that the exit node value is now only 1, not 10.

(1) [1 pt] When running value iteration, what is the smallest value of k for which Vj,(A) will be non-zero?
4
(m) [1 pt] What will V},(A) be when it is first non-zero?
1/8
(n) [1 pt] After how many iterations k will we have V(A) = V*(A)? If they will never become equal, write never.

4. This problem is different from the previous one, in that a state transition never fails by looping to the same state.
Here, a movement action may fail, but that always moves the agent into an absorbing state.

15



Finally, consider the following mini-grid (rewards shown on left, state names shown on right).

+4 A +16 L A R

In this scenario, the discount is v = 1. The failure probability is actually f = 0, but, now we do not actually know the
details of the MDP, so we use reinforcement learning to compute various values. We observe the following transition
sequence (recall that state X is the end-of-game absorbing state):

~

S a S T
A Right R 0
R Ezit X 16
A Left L 0
L Erit X 4
A Right R 0
R Ezit X 16
A Left L 0
L Erit X 4

(o) [2 pts] After this sequence of transitions, if we use a learning rate of o = 0.5, what would temporal difference
learning learn for the value of A? Remember that V(s) is intialized with 0 for all s.

3. Remember how temporal difference learning works: upon seeing a s, a,r, s’ tuple, we update the value function as
Vit1(s) = (1 — a)Vi(s) + afr + V;(s')). To get the answer, simply write out a table of states, all initially with value
0, and then update it with information in each row of the table above. When all rows have been processed, see what

value you ended up with for A.

(p) [2 pts] If these transitions repeated many times and learning rates were appropriately small for convergence,
what would temporal difference learning converge to for the value of A7

10. We are simply updating the value function with the results of following this policy, and that’s what we will
converge to. For state A, the given tuples show the agent going right as often as it goes left Clearly, if the agent goes

left as often as it goes right from A, the value of being in A is only 16/2 + 4/2 = 10.

(a) [2 pts] After this sequence of transitions, if we use a learning rate of a = 0.5, what would Q-learning learn for
the Q-value of (A, Right)? Remember that Q(s,a) is initialized with 0 for all (s, a).

4. The technique is the same as in problem (o), but use the Q-learning update (which includes a max). How do you
get the max? Here’s an example:

The sample sequence: (A, Right, R,0).

Q(s,a) + (1 — @)Q(s,a) + a(r + ymaxy (s, a’)).

Q(A, right) < (1 — a)Q(A, right) + a(r + ymax, (R, a’)).

But since there is only one exit action from R, then:

Q(A, right) + (1 — a)Q(A, right) + a(r + YQ(R, Exit)).

Note that this MDP is very small — you will finish the game in two moves (assuming you have to move from A).

(r) [2 pts] If these transitions repeated many times and learning rates were appropriately small for convergence,
what would Q-learning converge to for the Q-value of (A, Right)?

16. Q-learning converges to the optimal Q-value function, if the states are fully explored and the convergence rate is
set correctly.
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