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Q1. [10 pts] December 21, 2012

A smell of sulphur (S) can be caused either by rotten eggs (E) or as a sign of the doom brought by the Mayan
Apocalypse (M). The Mayan Apocalypse also causes the oceans to boil (B). The Bayesian network and corresponding
conditional probability tables for this situation are shown below. For each part, you should give either a numerical
answer (e.g. 0.81) or an arithmetic expression in terms of numbers from the tables below (e.g. 0.9 · 0.9).

Note: be careful of doing unnecessary computation here.

P (E)
+e 0.4
−e 0.6

P (S|E,M)
+e +m +s 1.0
+e +m −s 0.0
+e −m +s 0.8
+e −m −s 0.2
−e +m +s 0.3
−e +m −s 0.7
−e −m +s 0.1
−e −m −s 0.9

E

S

M

B

P (M)
+m 0.1
−m 0.9

P (B|M)
+m +b 1.0
+m −b 0.0
−m +b 0.1
−m −b 0.9

(a) [2 pts] Compute the following entry from the joint distribution:

P (−e,−s,−m,−b) = P (−e)P (−m)P (−s| − e,−m)P (−b| −m) = (0.6)(0.9)(0.9)(0.9) = 0.4374
by expanding the joint according to the chain rule of conditional probability.

(b) [2 pts] What is the probability that the oceans boil?

P (+b) = P (+b|+ m)P (+m) + P (+b| −m)P (−m) = (1.0)(0.1) + (0.1)(0.9) = 0.19
by marginalizing out m according to the law of total probability.

(c) [2 pts] What is the probability that the Mayan Apocalypse is occurring, given that the oceans are boiling?

P (+m|+ b) = P (+b|+m)P (+m)
P (+b) = (1.0)(0.1)

0.19 ≈ .5263

by the definition of conditional probability.
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The figures and table below are identical to the ones on the previous page and are repeated here for your convenience.

P (E)
+e 0.4
−e 0.6

P (S|E,M)
+e +m +s 1.0
+e +m −s 0.0
+e −m +s 0.8
+e −m −s 0.2
−e +m +s 0.3
−e +m −s 0.7
−e −m +s 0.1
−e −m −s 0.9

E

S

M

B

P (M)
+m 0.1
−m 0.9

P (B|M)
+m +b 1.0
+m −b 0.0
−m +b 0.1
−m −b 0.9

(d) [2 pts] What is the probability that the Mayan Apocalypse is occurring, given that there is a smell of sulphur,
the oceans are boiling, and there are rotten eggs?

P (+m|+ s,+b,+e) =

P (+m,+s,+b,+e)∑
m P (m,+s,+b,+e)

=
P (+e)P (+m)P (+s|+ e,+m)P (+b|+ m))∑

m P (+e)P (m)P (+s|+ e,m)P (+b|m)

=
(0.4)(0.1)(1.0)(1.0)

(0.4)(0.1)(1.0)(1.0) + (0.4)(0.9)(0.8)(0.1)

=
0.04

0.04 + 0.0288
≈ .5814

(e) [2 pts] What is the probability that rotten eggs are present, given that the Mayan Apocalypse is occurring?

P (+e|+ m) = P (+e) = 0.4
The first equality holds true as we have E ⊥⊥ M (E is independent of M), which can be inferred from the graph of
the Bayes’ net.
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Q2. [16 pts] Bayes’ Nets Representation
(a) [6 pts] Graph Structure: Conditional Independence

Consider the Bayes’ net given below.

A B C

F HAAAG

D E

Remember that X ⊥⊥ Y reads as “X is independent of Y given nothing”, and X ⊥⊥ Y |{Z,W} reads as “X is
independent of Y given Z and W .”

For each expression, fill in the corresponding circle to indicate whether it is True or False.

(i) © True  False It is guaranteed that A ⊥⊥ B
The edge between A and B implies that independency is not guaranteed.

(ii)  True © False It is guaranteed that A ⊥⊥ C
No active paths.

(iii) © True  False It is guaranteed that A ⊥⊥ D | {B,H}
An active path: A→ F → G (descendant H observed)← D.

(iv)  True © False It is guaranteed that A ⊥⊥ E|F
No active paths.

(v) © True  False It is guaranteed that G ⊥⊥ E|B
An active path: G← F ← A→ B (observed)← E.

(vi) © True  False It is guaranteed that F ⊥⊥ C|D
An active path: F ← A→ B (descendent D observed)← C.

(vii)  True © False It is guaranteed that E ⊥⊥ D|B
No active paths.

(viii) © True  False It is guaranteeed that C ⊥⊥ H|G
An active path: C → B (descendent G observed)← E → H.
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(b) Graph structure: Representational Power

Recall that any directed acyclic graph G has an associated family of probability distributions, which consists
of all probability distributions that can be represented by a Bayes’ net with structure G.

For the following questions, consider the following six directed acyclic graphs:

In general, the absence of an edge implies independence but the presence of an edge does not guarantee
dependence. For a Bayes’ net to represent a joint distribution, it can only make a subset of the conditional
independence assumptions given by the joint. If a Bayes’ net makes more independence assumptions than
the joint, its family of distributions is not guaranteed to include the joint distribution because the Bayes’ net
family is constrained by more independence relationships. For instance G1 can only represent the completely
independent joint P (A,B,C) = P (A)P (B)P (C).

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

G1 G2 G3

G4 G5 G6

(i) [2 pts] Assume all we know about the joint distribution P (A,B,C) is that it can be represented by
the product P (A|B,C)P (B|C)P (C). Mark each graph for which the associated family of probability
distributions is guaranteed to include P (A,B,C).

© G1 © G2 © G3

 G4 © G5 © G6

G4 is fully connected, and is therefore able to represent any joint distribution. The others cannot represent
P (A|B,C)P (B|C)P (C) because they make more independence assumptions, which you can verify. For
example, G3 assumes A ⊥⊥ C|B but this is not given by the joint.

(ii) [2 pts] Now assume all we know about the joint distribution P (A,B,C) is that it can be represented
by the product P (C|B)P (B|A)P (A). Mark each graph for which the associated family of probability
distributions is guaranteed to include P (A,B,C).

© G1 © G2  G3

 G4  G5 © G6

G1 assumes all variables are independent, G2 B is independent of the others, and G6 assumes A ⊥⊥ C.
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(c) Marginalization and Conditioning

Consider a Bayes’ net over the random variables A,B,C,D,E with the structure shown below, with full joint
distribution P (A,B,C,D,E).

The following three questions describe different, unrelated situations (your answers to one question should not
influence your answer to other questions).

Marginalization renders the neighbors of the marginalized out variable dependent.

Conditioning fixes the observed variables and renders their ancestors dependent according to the rules of
d-separation.

BA

C

ED
(i) [2 pts] Consider the marginal distribution P (A,B,D,E) =

∑
c P (A,B, c,D,E), where C was eliminated.

On the diagram below, draw the minimal number of arrows that results in a Bayes’ net structure that is
able to represent this marginal distribution. If no arrows are needed write “No arrows needed.”

BA

ED

The high level overview for these types of problems is that the resultant graph must be able to encode the
same conditional independence assumptions from the initial Bayes’ net we have. For example, let’s look
at the BN above. We see the following independence assumptions:

� A ⊥ B

� A ⊥ D|C
� B ⊥ D|C
� A ⊥ E|C
� B ⊥ E|C
� D ⊥ E|C

When we marginalize out C, we remove C from the graph. The conditional independence assumptions
involving C no longer matter, so we just need to preserve:

A ⊥ B

To do this, we cannot have an edge between A and B. A and B must also be D-separated in the resultant
BN, which it is in the solution. Every other edge is fair game because we don’t make any other conditional
independence assumptions.

If you think about it, having E → D or D → E will fit the requirement above (it’s also a valid point to
say that the BN is symmetrical so the direction should not matter.) However, the arrow between A and
D matters because we want ADB to be a common effect triple, which is an inactive triple if the middle
node is unobserved, hence preserving the A ⊥ B requirement.
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B

ED

C

(ii) [2 pts] Assume we are given an observation: A = a. On the diagram below, draw the minimal number
of arrows that results in a Bayes’ net structure that is able to represent the conditional distribution
P (B,C,D,E | A = a). If no arrows are needed write “No arrows needed.”

Observing A fixes its value and removes it from the Bayes’ net. By d-separation no further dependence is
introduced.

(iii) [2 pts] Assume we are given two observations: D = d,E = e. On the diagram below, draw the minimal
number of arrows that results in a Bayes’ net structure that is able to represent the conditional distribution
P (A,B,C | D = d,E = e). If no arrows are needed write “No arrows needed.” Observing D and E

BA
C

makes an active path to their parent C, which in turn activates the common effect triple, and renders A
and B dependent.
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Q3. [13 pts] Variable Elimination

For the Bayes’ net shown on the right, we are given the query P (B,D |
+f). All variables have binary domains. Assume we run variable
elimination to compute the answer to this query, with the following
variable elimination ordering: A, C, E, G.

B C

D E F G

A

(a) Complete the following description of the factors generated in this process:

After inserting evidence, we have the following factors to start out with:

P (A), P (B|A), P (C|B), P (D|C), P (E|C,D), P (+f |C,E), P (G|C,+f)

When eliminating A we generate a new factor f1 as follows:

f1(B) =
∑
a

P (a)P (B|a)

This leaves us with the factors:

P (C|B), P (D|C), P (E|C,D), P (+f |C,E), P (G|C,+f), f1(B)

(i) [2 pts] When eliminating C we generate a new factor f2 as follows:

f2(B,D,E,+f,G) =
∑
c

P (c|B)P (D|c)P (E|c,D)P (+f |c, E)P (G|c,+f)

This leaves us with the factors:

f1(B), f2(B,D,E,+f,G)

(ii) [2 pts] When eliminating E we generate a new factor f3 as follows:

f3(B,D,+f,G) =
∑
e

f2(B,D,E,+f,G)

This leaves us with the factors:

f1(B), f3(B,D,+f,G)

(iii) [2 pts] When eliminating G we generate a new factor f4 as follows:

f4(B,D,+f) =
∑
g

f3(B,D,+f, g)

This leaves us with the factors:

f1(B), f4(B,D,+f)

(b) [2 pts] Explain in one sentence how P (B,D|+ f) can be computed from the factors left in part (iii) of (a)?

Join f1f4 to obtain P (B,D,+f) and normalize it to get P (B,D | f) Concretely, P (b, d | +f) = f1(b)f4(b,d,+f)∑
b′,d′ f1(b)f4(b,d,+f) .
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(c) [1 pt] Among f1, f2, . . . , f4, which is the largest factor generated, and how large is it? Assume all variables have
binary domains and measure the size of each factor by the number of rows in the table that would represent
the factor.

f2(B,D,E,+f,G) is the largest factor generated. It has 4 variables, hence 24 = 16 entries.

For your convenience, the Bayes’ net from the previous page is shown again below.

B C

D E F G

A

(d) [4 pts] Find a variable elimination ordering for the same query, i.e., for P (B,D | +f), for which the maximum
size factor generated along the way is smallest. Hint: the maximum size factor generated in your solution
should have only 2 variables, for a table size of 22 = 4. Fill in the variable elimination ordering and the factors
generated into the table below.

Variable Eliminated Factor Generated

A f1(B)

G f2(C,+f)

E f3(C,D)

C f4(B,D,+f)

For example, in the naive ordering we used earlier, the first line in this table would have had the following two
entries: A, f1(B). For this question there is no need to include how each factor is computed, i.e., no need to include
expressions of the type =

∑
a P (a)P (B|a).

Note: multiple orderings are possible. In particular in this case all orderings with E and G before C are correct.
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Q4. [10 pts] Bayes’ Nets Sampling
Assume the following Bayes’ net, and the corresponding distributions over the variables in the Bayes’ net:

BA C D
P (B|A)

�a �b 2/3
�a +b 1/3
+a �b 4/5
+a +b 1/5

P (A)
�a 3/4
+a 1/4

P (C|B)
�b �c 1/4
�b +c 3/4
+b �c 1/2
+b +c 1/2

P (D|C)
�c �d 1/8
�c +d 7/8
+c �d 5/6
+c +d 1/6

(a) You are given the following samples:

+a + b − c − d
+a − b + c − d

−a + b + c − d

−a − b + c − d

+a − b − c + d

+a + b + c − d

−a + b − c + d

−a − b + c − d

(i) [1 pt] Assume that these samples came from performing Prior Sampling, and calculate the sample estimate
of P (+c).
5/8

(ii) [2 pts] Now we will estimate P (+c | +a,−d). Above, clearly cross out the samples that would not be
used when doing Rejection Sampling for this task, and write down the sample estimate of P (+c | +a,−d)
below.
2/3

(b) [2 pts] Using Likelihood Weighting Sampling to estimate P (−a | +b,−d), the following samples were obtained.
Fill in the weight of each sample in the corresponding row.

Sample Weight

−a + b + c − d P (+b | −a)P (−d | +c) = 1/3 ∗ 5/6 = 5/18 = 0.277

+a + b + c − d P (+b | +a)P (−d | +c) = 1/5 ∗ 5/6 = 5/30 = 1/6 = 0.17

+a + b − c − d P (+b | +a)P (−d | −c) = 1/5 ∗ 1/8 = 1/40 = 0.025

−a + b − c − d P (+b | −a)P (−d | −c) = 1/3 ∗ 1/8 = 1/24 = 0.042

(c) [1 pt] From the weighted samples in the previous question, estimate P (−a | +b,−d).

5/18+1/24
5/18+5/30+1/40+1/24 = 0.625

(d) [2 pts] Which query is better suited for likelihood weighting, P (D | A) or P (A | D)? Justify your answer in
one sentence.

P (D | A) is better suited for likelihood weighting sampling, because likelihood weighting conditions only on
upstream evidence.
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(e) [2 pts] Recall that during Gibbs Sampling, samples are generated through an iterative process.

Assume that the only evidence that is available is A = +a. Clearly fill in the circle(s) of the sequence(s) below
that could have been generated by Gibbs Sampling.

 Sequence 1

1 : +a −b −c +d
2 : +a −b −c +d
3 : +a −b +c +d

© Sequence 2

1 : +a −b −c +d
2 : +a −b −c −d
3 : −a −b −c +d

 Sequence 3

1 : +a −b −c +d
2 : +a −b −c −d
3 : +a +b −c −d

© Sequence 4

1 : +a −b −c +d
2 : +a −b −c −d
3 : +a +b −c +d

Gibbs sampling updates one variable at a time and never changes the evidence.

The first and third sequences have at most one variable change per row, and hence could have been gen-
erated from Gibbs sampling. In sequence 2, the evidence variable is changed. In sequence 4, the second and
third samples have both B and D changing.
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Q5. [15 pts] Probability and Decision Networks
The new Josh Bond Movie (M), Skyrise, is premiering later this week. Skyrise will either be great (+m) or horrendous
(−m); there are no other possible outcomes for its quality. Since you are going to watch the movie no matter what,
your primary choice is between going to the theater (theater) or renting (rent) the movie later. Your utility of
enjoyment is only affected by these two variables as shown below:

M P(M)
+m 0.5
-m 0.5

M A U(M,A)
+m theater 100
-m theater 10

+m rent 80
-m rent 40

(a) [3 pts] Maximum Expected Utility

Compute the following quantities:

EU(theater) = P (+m)U(+m, theater) + P (−m)U(−m, theater) = 0.5 ∗ 100 + 0.5 ∗ 10 = 55

EU(rent) = P (+m)U(+m, rent) + P (−m)U(−m, rent) = 0.5 ∗ 80 + 0.5 ∗ 40 = 60

MEU({}) = 60

Which action achieves MEU({}) = rent
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(b) [3 pts] Fish and Chips

Skyrise is being released two weeks earlier in the U.K. than the U.S., which gives you the perfect opportunity
to predict the movie’s quality. Unfortunately, you don’t have access to many sources of information in the
U.K., so a little creativity is in order.

You realize that a reasonable assumption to make is that if the movie (M) is great, citizens in the U.K. will
celebrate by eating fish and chips (F ). Unfortunately the consumption of fish and chips is also affected by a
possible food shortage (S), as denoted in the below diagram.

The consumption of fish and chips (F ) and the food shortage (S) are both binary variables. The relevant
conditional probability tables are listed below:

S M F P (F |S,M)
+s +m +f 0.6
+s +m -f 0.4
+s -m +f 0.0
+s -m -f 1.0

S M F P (F |S,M)
-s +m +f 1.0
-s +m -f 0.0
-s -m +f 0.3
-s -m -f 0.7

S P (S)
+s 0.2
-s 0.8

You are interested in the value of revealing the food shortage node (S). Answer the following queries:

EU(theater|+ s) =

The shortage variable is independent of the parents of the utility node when no additional evidence is present;
thus, the same values hold:

EU(theater|+ s) = EU(theater) = 55

EU(rent|+ s) = EU(rent) = 60

MEU({+s}) = 60

Optimal Action Under {+s} = r (Rent)

MEU({−s}) = 60

Optimal Action Under {−s} = r (Rent)

V PI(S) = 0, since the Value of Perfect Information is the expected difference in MEU given the evidence vs.
without the evidence and here the evidence is uninformative.
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(c) [5 pts] Greasy Waters

You are no longer concerned with the food shortage variable. Instead, you realize that you can determine
whether the runoff waters are greasy (G) in the U.K., which is a variable that indicates whether or not fish
and chips have been consumed. The prior on M and utility tables are unchanged. Given this different model
of the problem:

G F P (G|F )
+g +f 0.8
-g +f 0.2

+g -f 0.3
-g -f 0.7

F M P (F |M)
+f +m 0.92
-f +m 0.08

+f -m 0.24
-f -m 0.76

M P(M)
+m 0.5
-m 0.5

M A U(M,A)
+m theater 100
-m theater 10

+m rent 80
-m rent 40

[Decision network] [Tables that define the model]

F P (F )
+f 0.58
-f 0.42

G P (G)
+g 0.59
-g 0.41

M G P (M |G)
+m +g 0.644
-m +g 0.356

+m -g 0.293
-m -g 0.707

G M P (G|M)
+g +m 0.760
-g +m 0.240

+g -m 0.420
-g -m 0.580

M F P (M |F )
+m +f 0.793
-m +f 0.207

+m -f 0.095
-m -f 0.905

[Tables computed from the first set of tables. Some of them might be convenient to answer the questions below]

Answer the following queries:

MEU(+g) = max(EU(theater|+ g), EU(rent|+ g))

EU(theater|+g) = P (+m|+g)∗U(+m, theater)+P (−m|+g)∗U(−m, theater) = (0.644)∗100+(0.356)∗10 =
67.96

EU(rent|+ g) = P (+m|+ g) ∗U(+m, rent) + P (−m|+ g) ∗U(−m, rent) = (0.644) ∗ 80 + (0.356) ∗ 40 = 65.76

max(EU(theater|+ g), EU(rent|+ g)) = 67.96

MEU(−g) = max(EU(theater| − g), EU(rent| − g))

EU(theater|−g) = P (+m|−g)∗U(+m, theater)+P (−m|−g)∗U(−m, theater) = (0.293)∗100+(0.707)∗10 =
36.37

EU(rent| − g) = P (+m| − g) ∗U(+m, rent) + P (−m| − g) ∗U(−m, rent) = (0.293) ∗ 80 + (0.707) ∗ 40 = 51.72

max(EU(theater| − g), EU(rent| − g)) = 51.72

V PI(G) = P (+g) ∗MEU(+g) + P (−g) +MEU(−g)−MEU({}) = 0.59 ∗ 67.96 + 0.41 ∗ 51.72−MEU({}) =
61.3− 60 = 1.3
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(d) VPI Comparisons

We consider the shortage variable (S) again, resulting in the decision network shown below. The (conditional)
probability tables for P (S), P (M), P (F |S,M) and P (G|F ) are the ones provided above. The utility function
is still the one shown in part (a). Circle all statements that are true, and provide a brief justification (no credit
without justification).

(i) [1 pt] V PI(S) :

V PI(S) < 0 V PI(S) = 0 V PI(S) > 0 V PI(S) = V PI(F ) V PI(S) = V PI(G)

Justify:

With no evidence, VPI(S) is zero because it is conditionally independent of the parents of the utility node.

(ii) [1 pt] V PI(S|G) :

V PI(S|G) < 0 V PI(S|G) = 0 V PI(S|G) > 0 V PI(S|G) = V PI(F ) V PI(S|G) = V PI(G)

Justify:

We accepted several solutions for this question.

Observing G turns S− > F < −M into an active triple, which means S is no longer conditionally
independent from the parents of the utility node (M). This introduces the possibility for V PI(S|G) to
be strictly positive.

If is possible for V PI(S|G) to be zero due to the presence of conditional independencies that are not
exposed by the graph structure (e.g., if F were a coin flip that was independent of S due to a very
special choice of CPT entries). It is clear from the CPTs there are no such conditional independencies;
consequently, this is not a reason why V PI(S|G) could be 0.

It is possible for V PI(S|G) to be zero if observing S does not change the optimal action for any possible
value of S or G (essentially knowing S when G is observed does not allow you to improve your expected
performance). Determining this requires substantial computation. We didn’t expect you to do so, and
accepted justifications that reflect (most of) the above reasoning pattern.

For your interest, we did compute the optimal actions for each situation, and theater is optimal for
(+s,+g) and for (−s,+g) and rent is optimal for (+s,−g) and for (−s,−g) and hence it happens to be
the case that V PI(S|G) = 0.

(iii) [1 pt] V PI(G|F ) :

V PI(G|F ) < 0 V PI(G|F ) = 0 V PI(G|F ) > 0 V PI(G|F ) = V PI(F ) V PI(G|F ) = V PI(G)

Justify:

G is independent of the parents of the utility node if F is observed, so V PI(G|F ) = 0

(iv) [1 pt] V PI(G) :

V PI(G) = 0 V PI(G) > 0 V PI(G) > V PI(F ) V PI(G) < V PI(F ) V PI(G) = V PI(F )

Justify:

Since G is a noisy indicator of F, it still has a positive VPI (because VPI of F is positive), but its value
is less than the VPI of F. Only if G was an exact representation of F would their VPI’s be equal
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Q6. [12 pts] Election
The country of Purplestan is preparing to vote on its next President! In this election, the incumbent President
Purple is being challenged by the ambitious upstart Governor Fuschia. Purplestan is divided into two states of equal
population, Redexas and Blue York, and the Blue York Times has recruited you to help track the election.

Rt+1

Bt+1Bt

Rt

SR
t SB

t

SN
t

SN
t+1

SR
t+1 SB

t+1

Drift and Error Models

x D(x) ER(x) EB(x) EN (x)
5 .01 .00 .04 .00
4 .03 .01 .06 .00
3 .07 .04 .09 .01
2 .12 .12 .11 .05
1 .17 .18 .13 .24
0 .20 .30 .14 .40
-1 .17 .18 .13 .24
-2 .12 .12 .11 .05
-3 .07 .04 .09 .01
-4 .03 .01 .06 .00
-5 .01 .00 .04 .00

To begin, you draw the dynamic Bayes net given above, which includes the President’s true support in Redexas and
Blue York (denoted Rt and Bt respectively) as well as weekly survey results. Every week there is a survey of each
state, SR

t and SB
t , and also a national survey SN

t whose sample includes equal representation from both states.

The model’s transition probabilities are given in terms of the random drift model D(x) specified in the table above:

P (Rt+1|Rt) = D(Rt+1 −Rt)

P (Bt+1|Bt) = D(Bt+1 −Bt)

Here D(x) gives the probability that the support in each state shifts by x between one week and the next. Similarly,
the observation probabilities are defined in terms of error models ER(x), EB(x), and EN (x):

P (SR
t |Rt) = ER(SR

t −Rt)

P (SB
t |Bt) = EB(SB

t −Bt)

P (SN
t |Rt, Bt) = EN

(
SN
t −

Rt + Bt

2

)
where the error model for each survey gives the probability that it differs by x from the true support; the different
error models represent the surveys’ differing polling methodologies and sample sizes. Note that SN

t depends on both
Rt and Bt, since the national survey gives a noisy average of the President’s support across both states.

(a) Particle Filtering. First we’ll consider using particle filtering to track the state of the electorate. Throughout
this problem, you may give answers either as unevaluated numeric expressions (e.g. 0.4 · 0.9) or as numeric
values (e.g. 0.36).

(i) [2 pts] Suppose we begin in week 1 with the two particles listed below. Now we observe the first week’s
surveys: SR

1 = 51, SB
1 = 45, and SN

1 = 50. Write the weight of each particle given this evidence:

Particle Weight

(r = 49, b = 47) ER(51− 49) · EB(45− 47) · EN (50− 48) = .12 · .11 · .05 = 0.00066

(r = 52, b = 48) ER(51− 52) · EB(45− 48) · EN (50− 50) = .18 · .09 · .40 = 0.00648
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The figures and table below are identical to the ones on the previous page and are repeated here for your
convenience.

Rt+1

Bt+1Bt

Rt

SR
t SB

t

SN
t

SN
t+1

SR
t+1 SB

t+1

Drift and Error Models

x D(x) ER(x) EB(x) EN (x)
5 .01 .00 .04 .00
4 .03 .01 .06 .00
3 .07 .04 .09 .01
2 .12 .12 .11 .05
1 .17 .18 .13 .24
0 .20 .30 .14 .40
-1 .17 .18 .13 .24
-2 .12 .12 .11 .05
-3 .07 .04 .09 .01
-4 .03 .01 .06 .00
-5 .01 .00 .04 .00

(ii) [2 pts] Now we resample the particles based on their weights; suppose our resulting particle set turns out
to be {(r = 52, b = 48), (r = 52, b = 48)}. Now we pass the first particle through the transition model to
produce a hypothesis for week 2. What’s the probability that the first particle becomes (r = 50, b = 48)?

D(50− 52) ·D(48− 48) = .12 · .20 = 0.024

(iii) [2 pts] In week 2, disaster strikes! A hurricane knocks out the offices of the company performing the Blue
York state survey, so you can only observe SR

2 = 48 and SN
2 = 50 (the national survey still incorporates

data from voters in Blue York). Based on these observations, compute the weight for each of the two
particles:

Particle Weight

(r = 50, b = 48) ER(48− 50) · EN (50− 49) = .12 · .24 = 0.0288

(r = 49, b = 53) ER(48− 49) · EN (50− 51) = .18 · .24 = 0.0432
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(iv) [4 pts] Your editor at the Times asks you for a “now-cast” prediction of the election if it were held today.
The election directly measures the true support in both states, so R2 would be the election result in
Redexas and Bt the result in Blue York.

To simplify notation, let I2 = (SR
1 , SB

1 , SN
1 , SR

2 , SN
2 ) denote all of the information you observed in weeks

1 and 2, and also let the variable Wi indicate whether President Purple would win an election in week i:

Wi =

{
1 if Ri+Bi

2 > 50
0 otherwise.

For improved accuracy we will work with the weighted particles rather than resampling. Normally we
would build on top of step (iii), but to decouple errors, let’s assume that after step (iii) you ended up with
the following weights:

Particle Weight

(r = 50, b = 48) .12

(r = 49, b = 53) .18

Note this is not actually what you were supposed to end up with! Using the weights from this table,
estimate the following quantities:

� The current probability that the President would win:

P (W2 = 1|I2) ≈ weight of winning particles
total particle weight = .18

.12+.18 = 3/5.

� Expected support for President Purple in Blue York:

E[B2|I2] ≈ .12
.12+.18 · 48 + .18

.12+.18 · 53 = 51.

(v) [2 pts] The real election is being held next week (week 3). Suppose you are representing the current joint
belief distribution P (R2, B2|I2) with a large number of unweighted particles. Explain using no more than
two sentences how you would use these particles to forecast the national election (i.e. how you would
estimate P (W3 = 1|I2), the probability that the President wins in week 3, given your observations from
weeks 1 and 2).

Sample a new version of each particle from the transition model. Return the fraction of the new particles
in which 1

2 (r + b) > 50.
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Q7. [6 pts] Näıve Bayes Modeling Assumptions
You are given points from 2 classes, shown as rectangles and dots. For each of the following sets of points, mark
if they satisfy all the Näıve Bayes modelling assumptions, or they do not satisfy all the Näıve Bayes modelling
assumptions. Note that in (c), 4 rectangles overlap with 4 dots.

The conditional independence assumptions made by the Näıve Bayes model are that features are conditionally
independent when given the class. Features being independent once the class label is known means that for a fixed
class the distribution for f1 cannot depend on f2, and the other way around. Concretely, for discrete-valued features
as shown below, this means each class needs to have a distribution that corresponds to an axis-aligned rectangle. No
other assumption is made by the Näıve Bayes model. Note that linear separability is not an assumption of the Näıve
Bayes model—what is true is that for a Näıve Bayes model with all binary variables the decision boundary between
the two classes is a hyperplane (i.e., it’s a linear classifier). That, however, wasn’t relevant to the question as the
question examined which probability distribution a Näıve Bayes model can represent, not which decision boundaries.
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A note about feature independence: The Näıve Bayes model assumes features are conditionally independent given the
class. Why does this result in axis-aligned rectangles for discrete feature distributions? Intuitively, this is because
fixing one value is uninformative about the other: within a class, the values of one feature are constant across the
other. For instance, the dark square class in (b) has f1 ∈ [−0.5, 0.5] and f2 ∈ [−1, 0] and fixing one has no impact
on the domain of the other. However, when the features of a class are not axis-aligned then fixing one limits the
domain of the other, inducing dependence. In (e), fixing f2 = 1.5 restricts f1 to the two points at the top, whereas
fixing f2 = 0 gives a larger domain.
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Q8. [7 pts] Model Structure and Laplace Smoothing
We are estimating parameters for a Bayes’ net with structure GA and for a Bayes’ net with structure GB . To estimate
the parameters we use Laplace smoothing with k = 0 (which is the same as maximum likelihood), k = 5, and k =∞.

AG BG

Let for a given Bayes’ net BN the corresponding joint distribution over all variables in the Bayes’ net be PBN then
the likelihood of the training data for the Bayes’ net BN is given by∏

xi∈Training Set

PBN (xi)

Let L0
A denote the likelihood of the training data for the Bayes’ net with structure GA and parameters learned with

Laplace smoothing with k = 0.
Let L5

A denote the likelihood of the training data for the Bayes’ net with structure GA and parameters learned with
Laplace smoothing with k = 5.
Let L∞

A denote the likelihood of the training data for the Bayes’ net with structure GA and parameters learned with
Laplace smoothing with k =∞.
We similarly define L0

B , L5
B , L∞

B for structure GB .

For a given Bayes’ net structure, maximum likelihood parameters would give them maximum likelihood on the
training data. As you add more and more smoothing you tend to move away from the MLE and get lesser and lesser
likelihood on the training data. Hence parts (a), (b), and (c).

Across models, GB can represent a larger family of models and hence has a higher MLE estimate than we get with
using GA. Hence, we have (d). In (e), in the case of infinite smoothing, all variables become independent and equally
probable to take any value for both GA and GB , hence giving equal training likelihood. (f) follows from (a) and (d).
A priori, we can not say anything about (g) because the going from L0

A to L5
B we increase model power (which would

increase likelihood) and increase smoothing (which would decrease likelihood) and a priori we dont know which effect
would dominate.

For each of the questions below, mark which one is the correct option.

(a) [1 pt] Consider L0
A and L5

A

© L0
A ≤ L5

A  L0
A ≥ L5

A © L0
A = L5

A © Insufficient information to determine the ordering.

(b) [1 pt] Consider L5
A and L∞

A

© L5
A ≤ L∞

A  L5
A ≥ L∞

A © L5
A = L∞

A © Insufficient information to determine the ordering.

(c) [1 pt] Consider L0
B and L∞

B

© L0
B ≤ L∞

B  L0
B ≥ L∞

B © L0
B = L∞

B © Insufficient information to determine the ordering.

(d) [1 pt] Consider L0
A and L0

B

 L0
A ≤ L0

B © L0
A ≥ L0

B © L0
A = L0

B © Insufficient information to determine the ordering.

(e) [1 pt] Consider L∞
A and L∞

B
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© L∞
A ≤ L∞

B © L∞
A ≥ L∞

B  L∞
A = L∞

B © Insufficient information to determine the ordering.

(f) [1 pt] Consider L5
A and L0

B

 L5
A ≤ L0

B © L5
A ≥ L0

B © L5
A = L0

B © Insufficient information to determine the ordering.

(g) [1 pt] Consider L0
A and L5

B

© L0
A ≤ L5

B © L0
A ≥ L5

B © L0
A = L5

B  Insufficient information to determine the ordering.
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Q9. [11 pts] ML: Short Question & Answer
(a) Parameter Estimation and Smoothing. For the Bayes’ net drawn on the left, A can take on values +a,
−a, and B can take values +b and −b. We are given samples (on the right), and we want to use them to
estimate P (A) and P (B|A).

A B

(−a, +b)

(−a, −b)
(−a, +b)

(−a, +b)

(−a, −b)
(−a, −b)

(−a, −b)
(−a, +b)

(+a, +b)

(−a, −b)

(i) [3 pts] Compute the maximum likelihood estimates for P (A)
and P (B|A), and fill them in the 2 tables on the right.

A P (A)
+a 1/10

-a 9/10

A B P (B|A)
+a +b 1/1

+a -b 0/1

-a +b 4/9

-a -b 5/9

(ii) [3 pts] Compute the estimates for P (A) and P (B|A) using
Laplace smoothing with strength k = 2, and fill them in the
2 tables on the right.

A P (A)
+a 3/14

-a 11/14

A B P (B|A)
+a +b 3/5

+a -b 2/5

-a +b 6/13

-a -b 7/13

(b) [2 pts] Linear Separability. You are given samples from 2 classes (. and +) with each sample being described
by 2 features f1 and f2. These samples are plotted in the following figure. You observe that these samples are
not linearly separable using just these 2 features. Circle the minimal set of features below that you could use
alongside f1 and f2, to linearly separate samples from the 2 classes.

The samples are elliptically separable, so consider the equation for an ellipse.
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© f1 < 1.5

© f1 > 1.5

© f1 < −1.5

© f1 > −1.5

© f2 < 1

© f2 > 1

© f2 < −1

© f2 > −1

 f2
1

 f2
2

©|f1 + f2|

© Even using all these features alongside f1 and f2 will not make the samples
linearly separable.

(c) [3 pts] Perceptrons. In this question you will perform perceptron updates. You have 2 classes, +1 and −1,
and 3 features f0, f1, f2 for each training point. The +1 class is predicted if w · f > 0 and the −1 class is
predicted otherwise.

You start with the weight vector, w = [1 0 0]. In the table below, do a perceptron update for each of
the given samples. If the w vector does not change, write No Change, otherwise write down the new w vector.

f0 f1 f2 Class Updated w

1 7 8 -1 [0 − 7 − 8]

1 6 8 -1 Unchanged (no misclassification)

1 9 6 +1 [1 2 − 2]
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