
CS 188 Introduction to
Spring 2012 Artificial Intelligence Midterm Exam
INSTRUCTIONS

• You have 1.5 hours.

• The exam is closed book, closed notes except a one-page crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences at most.

• Questions are not sequenced in order of difficulty. Make sure to look ahead if stuck on a particular question.

Last Name

First Name

SID

Login

All the work on this
exam is my own.
(please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Q. 6 Total

/12 /12 /12 / 21 / 24 /19 /100



2

THIS PAGE INTENTIONALLY LEFT BLANK



NAME: 3

1. (12 points) Search

A

B

C
S

D

G

12

1

3 3

31
1

2

Answer the following questions about the search problem shown above. Break any ties alphabetically. For the
questions that ask for a path, please give your answers in the form ‘S −A−D −G.’

(a) (2 pt) What path would breadth-first graph search return for this search problem?

S −G

(b) (2 pt) What path would uniform cost graph search return for this search problem?

S −A− C −G

(c) (2 pt) What path would depth-first graph search return for this search problem?

S −A−B −D −G

(d) (2 pt) What path would A* graph search, using a consistent heuristic, return for this search problem?

S −A− C −G



4

(e) (4 pt) Consider the heuristics for this problem shown in the table below.

State h1 h2

S 5 4
A 3 2
B 6 6
C 2 1
D 3 3
G 0 0

i. (1 pt) Is h1 admissible? Yes No

ii. (1 pt) Is h1 consistent? Yes No

iii. (1 pt) Is h2 admissible? Yes No

iv. (1 pt) Is h2 consistent? Yes No

An admissible heuristic must underestimate or be equal to the true cost.
A consistent heuristic must satisfy h(N)− h(L) ≤ path(N → L) for all paths and nodes N and L.

h1 overestimates the cost S → G as 5 when it is 4, so it is inadmissible.
h1 is not consistent because h(S)− h(A) ≤ path(S → A) is violated as 5− 3 ≤ 1.
h2 does not overestimate costs and is admissible.
h2 is not consistent because h(S)− h(A) ≤ path(S → A) is violated as 4− 2 ≤ 1.



NAME: 5

2. (12 points) Hive Minds: Redux

Let’s revisit our bug friends from assignment 2. To recap, you control one or more insects in a rectangular
maze-like environment with dimensions M ×N , as shown in the figures below. At each time step, an insect
can move North, East, South, or West (but not diagonally) into an adjacent square if that square is currently
free, or the insect may stay in its current location. Squares may be blocked by walls (as denoted by the black
squares), but the map is known.

For the following questions, you should answer for a general instance of the problem, not simply for the example
maps shown.

(a) (6 pt) The Flea

You now control a single flea as shown in the maze above, which must reach a designated target location
X. However, in addition to moving along the maze as usual, your flea can jump on top of the walls. When
on a wall, the flea can walk along the top of the wall as it would when in the maze. It can also jump off
of the wall, back into the maze. Jumping onto the wall has a cost of 2, while all other actions (including
jumping back into the maze) have a cost of 1. Note that the flea can only jump onto walls that are in
adjacent squares (either north, south, west, or east of the flea).

i. (2 pt) Give a minimal state representation for the above search problem.

The state is the location of the flea as an (x, y) coordinate. The map is known, including walls and
the goal, and the actions of the flea depend only on its location.

ii. (2 pt) Give the size of the state space for this search problem.

The state space is M × N . The flea can occupy any free location in a given maze, and any square
might be free or a wall in a maze, so any of the M ×N locations are possible.

iii. (2 pt) Is the following heuristic admissible? Yes No

hflea = the Manhattan distance from the flea to the goal.

It is yielded by the relaxed problem where the flea passes through walls. It never overestimates because
1. a wall can never decrease the length of a path to the goal and 2. the cost of the flea jumping up a
wall (2) is higher than the cost of moving.
If it is not admissible, provide a nontrivial admissible heuristic in the space below.



6

(b) (6 pt) Long Lost Bug Friends

You now control a pair of long lost bug friends. You know the maze, but you do not have any information
about which square each bug starts in. You want to help the bugs reunite. You must pose a search
problem whose solution is an all-purpose sequence of actions such that, after executing those actions, both
bugs will be on the same square, regardless of their initial positions. Any square will do, as the bugs have
no goal in mind other than to see each other once again. Both bugs execute the actions mindlessly and
do not know whether their moves succeed; if they use an action which would move them in a blocked
direction, they will stay where they are. Unlike the flea in the previous question, bugs cannot jump onto
walls. Both bugs can move in each time step. Every time step that passes has a cost of one.

i. (2 pt) Give a minimal state representation for the above search problem.

The state is a list of boolean variables, one for each position in the maze, which marks whether the
position could contain a bug. There is no need to separately keep track of the bugs since their starting
positions are not known; to ensure they meet only a single square must be possible for both.

ii. (2 pt) Give the size of the state space for this search problem.

The size is 2MN since every of the M × N possible maze positions must be considered and every
position has a boolean variable. A full state is the product of the individual position states, which
are binary valued for the base of 2.

iii. (2 pt) Give a nontrivial admissible heuristic for this search problem.

hfriends = the maximum Manhattan distance of all possible pairs of points the bugs can be in.
This is never an overestimate because the number of steps to join the insects with certainty is at
least the shortest path (with no obstacles) between their farthest possible locations from one another.
Remember that the starting locations are unknown so the bugs cannot simply be controlled to move
toward each other.



NAME: 7

3. (12 points) A* Graph Search

function A* Graph Search(problem)
fringe ← an empty priority queue
fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
closed ← an empty set
Add Initial-State[problem] to closed
loop

if fringe is empty then
return failure

end if
node ← Remove-Front(fringe)
if Goal-Test(problem, State[node]) then

return node
end if
for successor in GetSuccessors(problem, State[node]) do

if successor not in closed then
Add successor to closed
fringe ← Insert(Make-Successor-Node(successor, node), fringe)

end if
end for

end loop
end function

The above implementation of A* graph search may be incorrect! In the list below circle all of the problems that
the bugs may cause when executing graph search and justify your answer. Note that the fringe is a priority
queue. Nodes are inserted into the fringe using the standard key for A*, namely f = g + h. h is a consistent
heuristic.

(a) The GetSuccessors function could be called multiple times on the same state.

(b) The algorithm is no longer complete.

(c) The algorithm could return a suboptimal solution.

(d) The implementation is incorrect, but none of the above problems will be caused.

(e) The implementation is correct.

To receive any credit you must briefly justify your answer in space below.

The bug is the insertion of successor into closed at time of insertion of a node into the fringe, rather than at
the time that node gets popped from the fringe. As a consequence of this bug, the first path encountered to a
state will put that state in the closed list. This can cause suboptimality as we only have the guarantee that a
state has been reached optimally once a node reaching it gets popped off the fringe.

(a) is False as when a node that reaches a state s is placed in the fringe, that state s is also put on the closed
list. This means never in the future can a node be placed on the fringe that ends in that same state s,
and hence the same state s can be the argument to GetSuccessors at most once.

(b) is False. A* tree search is complete. The difference is that the above algorithm will cut off parts of the tree
search whenever it has placed a node on the fringe in the past that ends in the same state. So compared
to tree search we only lose copies of subtrees that we are covering. Hence the above algorithm is complete.

(c) is True. See explanation at beginning of solution.

(d) is False.

(e) is False.



8

4. (21 points) Time Management

Two of our GSIs, Arjun and Woody, are making their schedules for a busy morning. There are five tasks to be
carried out:

(F) Pick up food for the group’s research seminar, which, sadly, takes one precious hour.
(H) Prepare homework questions, which takes 2 consecutive hours.
(P) Prepare the PR2 robot for a group of preschoolers’ visit, which takes one hour.
(S) Lead the research seminar, which takes one hour.
(T) Teach the preschoolers about the PR2 robot, which takes 2 consecutive hours.

The schedule consists of one-hour slots: 8am-9am, 9am-10am, 10am-11am, 11am-12pm. The requirements for
the schedule are as follows:

(a) In any given time slot each GSI can do at most one task (F, H, P, S, T).

(b) The PR2 preparation (P) should happen before teaching the preschoolers (T).

(c) The food should be picked up (F) before the seminar (S).

(d) The seminar (S) should be finished by 10am.

(e) Arjun is going to deal with food pick up (F) since he has a car.

(f) The GSI not leading the seminar (S) should still attend, and hence cannot perform another task (F, T,
P, H) during the seminar.

(g) The seminar (S) leader does not teach the preschoolers (T).

(h) The GSI who teaches the preschoolers (T) must also prepare the PR2 robot (P).

(i) Preparing homework questions (H) takes 2 consecutive hours, and hence should start at or before 10am.

(j) Teaching the preschoolers (T) takes 2 consecutive hours, and hence should start at or before 10am.

To formalize this problem as a CSP, use the variables F, H, P, S and T. The values they take on indicate the
GSI responsible for it, and the starting time slot during which the task is carried out (for a task that spans 2
hours, the variable represents the starting time, but keep in mind that the GSI will be occupied for the next
hour also - make sure you enforce constraint (a)!). Hence there are eight possible values for each variable,
which we will denote by A8, A9, A10, A11, W8, W9, W10, W11, where the letter corresponds to the GSI and
the number corresponds to the time slot. For example, assigning the value of A8 to a variables means that this
task is carried about by Arjun from 8am to 9am.

(a) (2 pt) What is the size of the state space for this CSP?

85 since every task variable has 8 values, 4 time slots × 2 GSIs to carry them out, and there are 5 such
tasks.

(b) (2 pt) Which of the statements above include unary constraints?

A unary constraint constrains the domain of a single variable. (d), (e), (i), (j) are unary constraints. (i)
and (j) express both unary constraints (on the time of the tasks) and binary constraints (the length of
tasks excludes other assignments during their time).

(c) (4 pt) In the table below, enforce all unary constraints by crossing out values in the table on the left
below. If you made a mistake, cross out the whole table and use the right one.

F A8 A9 A10 A11 W8 W9 W10 W11
H A8 A9 A10 A11 W8 W9 W10 W11
P A8 A9 A10 A11 W8 W9 W10 W11
S A8 A9 A10 A11 W8 W9 W10 W11
T A8 A9 A10 A11 W8 W9 W10 W11

(d) (3 pt) Start from the table above, select the variable S and assign the value A9 to it. Perform forward
checking by crossing out values in the table below. Again the table on the right is for you to use in case
you believe you made a mistake.



NAME: 9

F A8 A9 A10 A11 W8 W9 W10 W11
H A8 A9 A10 A11 W8 W9 W10 W11
P A8 A9 A10 A11 W8 W9 W10 W11
S A8 A9 A10 A11 W8 W9 W10 W11
T A8 A9 A10 A11 W8 W9 W10 W11

Forward checking prunes the variables’ domains of values inconsistent with S = A9, including: other
choices for S, conflicting time slots for A9 (a), the choices of F that do not precede 9 (c), W from working
during 9 (f), and A teaching the preschoolers (g).

(e) (3 pt) Based on the result of (d), what variable will we choose to assign next based on the MRV heuristic
(breaking ties alphabetically)? Assign the first possible value to this variable, and perform forward check-
ing by crossing out values in the table below. Again the table on the right is for you to use in case you
believe you made a mistake.

Variable F is selected and gets assigned value A8 .

F A8 A9 A10 A11 W8 W9 W10 W11
H A8 A9 A10 A11 W8 W9 W10 W11
P A8 A9 A10 A11 W8 W9 W10 W11
S A8 A9 A10 A11 W8 W9 W10 W11
T A8 A9 A10 A11 W8 W9 W10 W11

Have we arrived at a dead end (i.e., has any of the domains become empty)?

No.

(f) (4 pt) We return to the result from enforcing just the unary constraints, which we did in (c). Select the
variable S and assign the value A9. Enforce arc consistency by crossing out values in the table below.

F A8 A9 A10 A11 W8 W9 W10 W11
H A8 A9 A10 A11 W8 W9 W10 W11
P A8 A9 A10 A11 W8 W9 W10 W11
S A8 A9 A10 A11 W8 W9 W10 W11
T A8 A9 A10 A11 W8 W9 W10 W11

(g) (2 pt) Compare your answers to (d) and to (f). Does arc consistency remove more values or less values
than forward checking does? Explain why.

Arc consistency removes more values by checking more relationships between variables: AC checks consis-
tency between every pair of variables, and re-checks after domain pruning, while FC only checks between
assigned and unassigned variables.

(h) (1 pt) Check your answer to (f). Without backtracking, does any solution exist along this path? Provide
the solution(s) or state that there is none.

AC along this path gives 1 solution: F: A8 H: A10 P: W8 S: A9 T: W10
Backtracking is unnecessary since the constraints have been enforced by arc consistency and only single
values remained in each domain.



10

5. (24 points) Surrealist Pacman

In the game of Surrealist Pacman, Pacman plays against a moving wall . On Pacman’s turn, Pacman
must move in one of the four cardinal directions, and must move into an unoccupied square. On the wall’s
turn, the wall must move in one of the four cardinal directions, and must move into an unoccupied square. The
wall cannot move into a dot-containing square. Staying still is not allowed by either player. Pacman’s score is
always equal to the number of dots he has eaten.

The first game begins in the configuration shown below. Pacman moves first.

(a) (2 pt) Draw a game tree with one move for each player. Draw only the legal moves.

S E

0e 0e 0e

S N E

0e 0e 0e

S W E

(b) (1 pt) According to the depth-limited game tree you drew above what is the value of the game? Use
Pacman’s score as your evaluation function.

0, since all leaves have value 0 as Pacman cannot eat a dot in one move.

(c) (1 pt) If we were to consider a game tree with ten moves for each player (rather than just one), what
would be the value of the game as computed by minimax?

1. Pacman can force a win and eat the dot in ten moves, so the score increases to 1 once the dot is eaten
and remains there. For an example of such a win, consider the sequences E-S-S-E or E-S-E-S by Pacman
and the movement rules of the players.



NAME: 11

A second game is played on a more complicated board. A partial game tree is drawn, and leaf nodes have been
scored using an (unknown) evaluation function e.

(d) (3 pt) In the dashed boxes, fill in the values of all internal nodes using the minimax algorithm.

(e) (3 pt) Cross off any nodes that are not evaluated when using alpha-beta pruning (assuming the standard
left-to-right traversal of the tree).

8e 6e 7e

9e 2e 3e 2e 4e

0e 5e 6e

5e

8e 10e 2e

5

9 10 4 6

4

5

Running alpha-beta pruning on the game tree.

Root: α = −∞, β =∞
- - Left wall: α = −∞, β =∞
- - - - Leaf node: e = 8. Propagate e = 8 back to parent.

- - Left wall: Current value is 8. α = −∞, β = 8. Max doesn’t have a best value, so continue exploring.

- - - - Leaf node: e = 6. Propagate e = 6 back to parent.

- - Left wall: Current value is 6. α = −∞, β = 6. Max doesn’t have a best value, so continue exploring.

- - - - Leaf node: e = 7. Propagate e = 7 back to parent.

- - Left wall: No update. Current value is 6. α = −∞, β = 6. Max doesn’t have a best value, so continue
exploring.

- - - - Leaf node: e = 5. Propagate e = 5 back to parent.

- - Left wall: Current value is 5. We’re done here, so propagate 5 to root.

Root: Current value is 5. α = 5, β =∞. Explore right.

- - Right wall: α = 5, β =∞.

- - - - 1st Pac: α = 5, β =∞
- - - - - - Leaf node: e = 9. Propagate e = 9 back to parent.

- - - - 1st Pac: Current value is 9. α = 9, β =∞ MIN doesn’t have a best value, so continue exploring.

- - - - - - Leaf node: e = 2. Propagate e = 2 back to parent.

- - - - 1st Pac: No change. Current value is 9. Propagate 9 to parent.

- - Right wall: Current value is now 9. α = 5, β = 9. MIN wants anything less than 9 at this point, but
it’s still possible for MAX to get more than 5. Continue exploring.

- - - - 2nd Pac: α = 5, β = 9

- - - - - - Leaf node: e = 8. Propagate e = 8 back to parent.

- - - - 2nd Pac: Current value is now 8. α = 8, β = 9. Again, still possible for both players to benefit
(Imagine value = 8.5). Continue exploring.



12

- - - - - - Leaf node: e = 10. Propagate e = 10 back to parent.

- - - - 2nd Pac: Current value is now 10. So now, we know that v > β, which means that one of the players
is going to be unhappy. MAX wants something more than 10, but MIN is only satisfied with something
less than 9, so we don’t have to keep exploring.

- - - - PRUNE e = 2.

- - - - 2nd Pac: returns value of 10 to parent.

- - Left Wall: No change in value, current value is still 9. α = 5, β = 9. Again, still possible for both
players to benefit, so continue exploring.

- - - - 3rd Pac: α = 5, β = 9

- - - - - - Leaf node: e = 3. Propagate e = 3 back to parent.

- - - - 3rd Pac: Current value is 3. α = 5, β = 9. Continue exploring.

- - - - - - Leaf node: e = 2. Propagate e = 2 back to parent.

- - - - 3rd Pac: No change in value. Current value is 3. α = 5, β = 9. Continue exploring.

- - - - - - Leaf node: e = 4. Propagate e = 4 back to parent.

- - - - 3rd Pac: Current value is 4. We’re done, so return value of 4 to parent.

- - Left Wall: Current value becomes 4. At this point, we know that MIN wants anything that is less
than or equal to 4. However, MAX is only satisfied with something that is 5 or greater. Hence, we don’t
need to explore the rest of the children of this node since MAX will never let the game get down to this
branch.- -

Prune rest

(Filling values returned by alpha-beta or not crossing off children of a crossed off node were not penalized.)



NAME: 13

Suppose that this evaluation function has a special property: it is known to give the correct minimax value of
any internal node to within 2, and the correct minimax values of the leaf nodes exactly. That is, if v is the
true minimax value of a particular node, and e is the value of the evaluation function applied to that node,
e− 2 ≤ v ≤ e+ 2, and v = e if the node is a dashed box in the tree below.

Using this special property, you can modify the alpha-beta pruning algorithm to prune more nodes.

(f) (10 pt) Standard alpha-beta pseudocode is given below (only the max-value recursion). Fill in the boxes
on the right to replace the corresponding boxes on the left so that the pseudocode prunes as many nodes
as possible, taking account of this special property of the evaluation function.

function Max-Value(node, α, β)
e← EvaluationFunction(node)
if node is leaf then

return e
end if

(1)
v ← −∞
for child ← Children(node) do

v ←Max(v,Min-Value(child , α, β)) (2)

if v ≥ β then
return v

end if
α←Max(α, v)

end for
return v

end function

Fill in these boxes:
(1)

if e− 2 ≥ β then
return e− 2

end if

(2)

v ←Max(v,Min-Value(child ,
Max(α, e− 2),Min(β, e+ 2)))

For (1), the special property
guarantees e − 2 ≥ v and e − 2
is the smallest such value, so v is
substituted out without violating
the β inequality.

For (2), both sides of the in-
equality for the special property
are used to bound the best action
value for MAX α and the best
action value for MIN β. α and
β are sharpened whenever the ±
2 guarantee on e gives a higher
lower-bound (α) or lower upper-
bound (β).

(Variations are possible.)



14

The same game tree is shown below, with the evaluation function applied to internal as well as leaf nodes.

(g) (4 pt) In the game tree below cross off any nodes that can be pruned assuming the special property holds
true. If you are not sure you correctly formalized into pseudo-code your intuition on how to exploit the
special property for improved pruning, make sure to annotate your pruned nodes with a brief explanation
of why each of them was pruned.

8e 6e 7e

9e 2e 3e 2e 4e

8e 10e 2e 0e 5e 6e

5e

4e 6e

5e

8e 7e5e10e

Running pruning on game tree in detail. W1 and W2 refer to the left and right wall nodes respectively.
P1, P2, P3, P4 refer to Pacman nodes on the third level, left to right.

Root: Evaluation function returns 5. Range of value: [3, 7]. Set α : 3, β : 7 and explore(W1, α, β).

- W1: Evaluation function returns 4. Range of value: [2,6]. Set α : 3, β : 6.

- - Leaf node: e = 8. Send 8 back to W1.

- W1: v = 8. v < α? No. This means that MAX might still prefer this path.

- - Leaf node: e = 6. Send 6 back to W1.

- W1: 6 < 8 so v = 6. v < α? No. Continue exploring.

- - Leaf node: e = 7. Send 7 back to W1.

- W1: 7 > 6, so no change, v = 6. v < α? No. Continue exploring.

- - Leaf node: e = 5. Send 5 back to W1.

- W1: 5 < 6, so v = 5. Done. Send 5 back to root.

Root: Gets value 5, so v = 5. α : max(3, 5) = 5, β : 7. Still exploring right branch since MAX could get
a value 5 ≤ v ≤ 7. Explore(W2, α, β).

- W2: Evaluation function returns 6. Range of values [4, 8]. α : 5, β : 7, explore(P1,α, β).

- - P1: Evaluation function returns 8. Range: [6, 10], α : 6, β : 7.

- - - Leaf node: e = 9. Send e = 9 back to P1.

- - P1: v = 9. v > β? Yes!. We can prune here since P1 wants any value > 9. However, at the root we
know that the maximum value that MAX can get is 7. Hence, there is no way the game can get down to
P1. (Meaning that the value at the root can not be 9).

- - - Leaf node: Prune e = 2. Return 9 to W2.

- W2: v = 9. α, β don’t change: α : 5, β : 7. Explore(P2, α, β).

- - P2: Evaluation function returns 10. Range [8, 12], α : 8, β : 7. Notice that the best value for MIN that
can be achieved at P2 is 8. However, the best value for MIN at the root is 7. Hence, there’s no way the
game can get down to P2. (Meaning the value of the root can not by 8). Prune all of P2’s children!. We
can return 8 to W2 since we know that there is some other path through W2 that yields a reward ≤ 7.



NAME: 15

- W2: v : min(8, 9) = 8, α : 5, β : 7. v < α? No! Explore(P3,α, β).

- - P3: Evaluation function returns 5. Range: [3, 7], α : 5, β : 7.

- - - Leaf node: e = 5. Send 3 back to P3.

- - P3: v = 3.v > β? No! Meaning MIN might still prefer this branch. α : 5, β : 7.

- - - Leaf node: e = 2. Send 2 back to P3.

- - P3: v = 3.v > β? No! α : 5, β : 7.

- - - Leaf node: e = 4. Send 4 back to P3.

- - P3: v = 4. Done. Return 4 to W2.

- W2: v : min(8, 4) = 4, α : 5, β : 7. v < α? Yes! Since MAX can guarantee a value of 5 and MIN will
only accept something < 4, don’t need to explore any further. Prune P4 and all its children. Return 4 to
root.

Root: Done.



16

6. (19 points) Multiple Choice and Short Answer Questions

Each true/false question is worth 1 point. Leaving a question blank is worth 0 points. Answering incorrectly
is worth −1 point.

For the questions that are not True/False, answer as concisely as possible (and no points are subtracted for a
wrong answer to these).

(a) (7 pt) Consider a graph search problem where for every action, the cost is at least ε, with ε > 0. Assume
the used heuristic is consistent.

True False Depth-first graph search is guaranteed to return an optimal solution.
False. Depth first search has no guarantees of optimality. Further, it measures paths in
length and not cost.

True False Breadth-first graph search is guaranteed to return an optimal solution.
False. Breadth first search has no guarantees of optimality unless the actions all have the
same cost, which is not the case here.

True False Uniform-cost graph search is guaranteed to return an optimal solution.
True. UCS expands paths in order of least total cost so that the optimal solution is found.

True False Greedy graph search is guaranteed to return an optimal solution.
False. Greedy search makes no guarantees of optimality. It relies solely on the heuristic
and not the true cost.

True False A* graph search is guaranteed to return an optimal solution.
True, since the heuristic is consistent in this case.

True False A* graph search is guaranteed to expand no more nodes than depth-first graph search.
False. Depth-first graph search could, for example, go directly to a sub-optimal solution.

True False A* graph search is guaranteed to expand no more nodes than uniform-cost graph search.
True. The heuristic could help to guide the search and reduce the number of nodes ex-
panded. In the extreme case where the heuristic function returns zero for every state,
A* and UCS will expand the same number of nodes. In any case, A* with a consistent
heuristic will never expand more nodes than UCS.

(b) (2 pt) Iterative deepening is sometimes used as an alternative to breadth first search. Give one advantage
of iterative deepening over BFS, and give one disadvantage of iterative deepening as compared with BFS.
Be concise and specific! Advantage: iterative deepening requires less memory (limited to the current
depth). Disadvantage: iterative deepening repeats computations and therefore can require additional run
time.

(c) (2 pt) Consider two different A* heuristics, h1(s) and h2(s), that are each admissible. Now, combine the
two heuristics into a single heuristic, using some (not yet specified) function g. Give the choice for g that
will result in A* expanding a minimal number of nodes while still guaranteeing admissibility. Your answer
should be a heuristic function of the form g(h1(s), h2(s)).
g = max(h1(s), h2(s)). Consider the true cost h∗(s). For admissibility, both h1(s) ≤ h∗(s) and h2(s) ≤
h∗(s), and their max can be no larger. h∗(s) leads to expanding the minimal number of nodes: in particular
it expands the nodes of an optimal path to a goal and no more. g is the closest heuristic to h∗ of guaranteed
admissibility by h1 and h2 and so expands a minimal number of nodes for functions over h1, h2.

(d) (3 pt) Let h1(s) be an admissible A* heuristic. Let h2(s) = 2h1(s). Then:

True False The solution found by A* tree search with h2 is guaranteed to be an optimal solution.
False. h2 is not guaranteed to be admissible since only one side of the admissibility
inequality is doubled.

True False The solution found by A* tree search with h2 is guaranteed to have a cost at most twice
as much as the optimal path.
True. In A* tree search we always have that as long as the optimal path to the goal has not
been found, a prefix of this optimal path has to be on the fringe. Hence, if a non-optimal
solution is found, then at time of popping the non-optimal path from the fringe, a path
that is a prefix of the optimal path to the goal is sitting on the fringe. The cost ḡ of a



NAME: 17

non-optimal solution when popped is its f-cost. The prefix of the optimal path to the goal
has an f-cost of g+h0 = g+ 2h1 ≤ 2(g+h1) ≤ 2C∗, with C∗ the optimal cost to the goal.
Hence we have that ḡ ≤ 2C∗ and the found path is at most twice as long as the optimal
path.

True False The solution found by A* graph search with h2 is guaranteed to be an optimal solution.
False. h2 is not guaranteed to be admissible and graph search further requires consistency
for optimality.

(e) (2 pt) Consider a CSP with three variables: A, B, and C. Each of the three variables can take on one of
two values: either 1 or 2. There are three constraints: A 6= B, B 6= C, and A 6= C. In the table below,
cross off all values that are eliminated by enforcing arc-consistency. Also write one sentence interpreting
your answer.

A 1 2
B 1 2
C 1 2

No variables should be crossed out. There is no solution to this CSP, but arc-consistency

does not detect this. There is a consistent assignment in the head for each value of the tail and no values
are eliminated.

(f) (3 pt) Consider an adversarial game tree where the root node is a maximizer, and the minimax value of
the game is vM . Now, also consider an otherwise identical tree where every minimizer node is replaced
with a chance node (with an arbitrary but known probability distribution). The expectimax value of the
modified game tree is vE .

True False vM is guaranteed to be less than or equal to vE .
True. The maximizer is guaranteed to be able to achieve vM if the minimizer acts optimally.
He can potentially do better if the minimizer acts suboptimally (e.g. by acting randomly).
The expectation at chances nodes can be no less than the minimum of the nodes’ successors.

True False Using the optimal minimax policy in the game corresponding to the modified (chance)
game tree is guaranteed to result in a payoff of at least vM .
True. The minimax policy is always guaranteed to achieve payoff of at least vM , no matter
what the minimizer does.

True False Using the optimal minimax policy in the game corresponding to the modified (chance)
game tree is guaranteed to result in a payoff of at least vE .
False. In order to achieve vE in the modified (chance) game, the maximizer may need to
change his or her strategy. The minimax strategy may avoid actions where the minimum
value is less than the expectation. Moreover, even if the maximizer followed the expectimax
strategy, he or she is only guaranteed vE in expectation.


