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Q1. [19 pts] Bounded suboptimal search: weighted A*
In this class you met A*, an algorithm for informed search guaranteed to return an optimal solution when given an
admissible heuristic. Often in practical applications it is too expensive to find an optimal solution, so instead we
search for good suboptimal solutions.

Weighted A* is a variant of A* commonly used for suboptimal search. Weighted A* is exactly the same as A* but
where the f-value is computed differently:

f(n) = g(n) + ε h(n)

where ε ≥ 1 is a parameter given to the algorithm. In general, the larger the value of ε, the faster the search is, and
the higher cost of the goal found.

Pseudocode for weighted A* tree search is given below. NOTE: The only differences from the A* tree search
pseudocode presented in the lectures are: (1) fringe is assumed to be initialized with the start node before this
function is called (this will be important later), and (2) now Insert takes ε as a parameter so it can compute the
correct f -value of the node.

1: function Weighted-A*-Tree-Search(problem, fringe, ε)
2: loop do
3: if fringe is empty then return failure
4: node← Remove-Front(fringe)
5: if Goal-Test(problem, State[node]) then return node
6: for child-node in child-nodes do
7: fringe← Insert(child-node, fringe, ε)

(a) [2 pts] We’ll first examine how weighted A* works on the following graph:
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Execute weighted A* on the above graph with ε = 2, completing the following table. To save time, you can
optionally just write the nodes added to the fringe, with their g and f values.

node Goal? fringe
- - {S : g = 0, f = 16}

S No {S → A : g = 5, f = 7; S → B : g = 6, f = 20}
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(b) [5 pts] After running weighted A* with weight ε ≥ 1 a goal node G is found, of cost g(G). Let C∗ be the
optimal solution cost, and suppose the heuristic is admissible. Select the strongest bound below that holds,
and provide a proof.

© g(G) ≤ εC∗ © g(G) ≤ C∗ + ε © g(G) ≤ C∗ + 2ε © g(G) ≤ 2ε C∗ © g(G) ≤ ε2 C∗

Proof: (Partial credit for reasonable proof sketches.)

(c) Weighted A* includes a number of other algorithms as special cases. For each of the following, name the
corresponding algorithm.

(i) [1 pt] ε = 1.

Algorithm:

(ii) [1 pt] ε = 0.

Algorithm:

(iii) [1 pt] ε→∞ (i.e., as ε becomes arbitrarily large).

Algorithm:
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(d) Here is the same graph again:
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(i) [3 pts] Execute weighted A* on the above graph with ε = 1, completing the following table as in part (a):

node Goal? fringe

(ii) [4 pts] You’ll notice that weighted A* with ε = 1 repeats computations performed when run with ε = 2. Is
there a way to reuse the computations from the ε = 2 search by starting the ε = 1 search with a different
fringe? Let F denote the set that consists of both (i) all nodes the fringe the ε = 2 search ended with,
and (ii) the goal node G it selected. Give a brief justification for your answer.

© Use F as new starting fringe
© Use F with goal G removed as new starting fringe
© Use F as new starting fringe, updating the f -values to account for the new ε
© Use F with goal G removed as new starting fringe, updating the f -values to account for the new ε
© Initialize the new starting fringe to all nodes visited in previous search
© Initialize the new starting fringe to all nodes visited in previous search, updating the f -values to ac-
count for the new ε
© It is not possible to reuse computations, initialize the new starting fringe as usual

Justification:
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Here is the same graph again:
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(iii) [2 pts] Now re-run the ε = 1 search for the above graph using the fringe you selected in the previous
question.

node Goal? fringe
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Q2. [6 pts] Generalizing Reinforcement Learning
Assume we have an MDP with state space S, action space A, reward function R(s, a, s′), and discount γ. Our
eventual goal is to learn a policy that can be used by a robot in the real world. However, we only have access to
simulation software, not the robot directly. We know that the simulation software is built using the transition model
Tsim(s, a, s′) which is unfortunately different than the transition model that governs our real robot, Treal(s, a, s

′).

Without changing the simulation software, we want to use the samples drawn from the simulator to learn Q-values
for our real robot.

Recall the Q-learning update rule. Given a sample (s, a, s′, r), it performs the following update:

Q(s, a)← (1− α)Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)

]
(a) [4 pts] Assuming the samples are drawn from the simulator, which new update rule will learn the correct

Q-value functions for the real world robot? Circle the correct update rule and provide an explanation for your
choice in the box below.

© Q(s, a)← (1− α)Q(s, a) + αTsim(s, a, s′) [r + γmaxa′ Q(s′, a′)]

© Q(s, a)← (1− α)Q(s, a) + αTreal(s, a, s
′) [r + γmaxa′ Q(s′, a′)]

© Q(s, a)← (1− α)Q(s, a) + α 1
Tsim(s,a,s′) [r + γmaxa′ Q(s′, a′)]

© Q(s, a)← (1− α)Q(s, a) + α 1
Treal(s,a,s′)

[r + γmaxa′ Q(s′, a′)]

© Q(s, a)← (1− α)Q(s, a) + αTreal(s,a,s
′)

Tsim(s,a,s′) [r + γmaxa′ Q(s′, a′)]

© Q(s, a)← (1− α)Q(s, a) + α Tsim(s,a,s′)
Treal(s,a,s′)

[r + γmaxa′ Q(s′, a′)]

Justification:

(b) [2 pts] Now consider the case where we have n real robots with transition models T 1
real(s, a, s

′), . . . , Tnreal(s, a, s
′)

and still only one simulator. Is there a way to learn policies for all n robots simultaneously by using the same
samples from the simulator? If yes, explain how. If no, explain why not. (1-2 sentences)

©Yes ©No

Justification:
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Q3. [18 pts] Extending the Forward Algorithm
Consider the HMM graph structure shown below.

X1 X2 X3

E1 E2 E3

Recall the Forward algorithm is a two step iterative algorithm used to approximate the probability distribution
P (Xt|e1, . . . , et). The two steps of the algorithm are as follows:

Elapse Time P (Xt|e1, . . . , et−1) =
∑
xt−1

P (Xt|xt−1)P (xt−1|e1, . . . , et−1)

Observe P (Xt|e1, . . . , et) = P (et|Xt)P (Xt|e1,...,et−1)∑
xt
P (et|xt)P (xt|e1,...,et−1)

For this problem we will consider modifying the forward algorithm as the HMM graph structure changes. Our goal
will continue to be to create an iterative algorithm which is able to compute the distribution of states, Xt, given all
available evidence from time 0 to time t.

Note: If the probabilities required can be computed without any change to original update equations, mark the
no change bubble. Otherwise write the new update equation inside the box.

Consider the graph below where new observed variables, Zi, are introduced and influence the evidence.

X1 X2 X3

Z1 Z2 Z3

E1 E2 E3

(a) [3 pts] State the modified Elapse Time update. ©No Change

P (Xt|e1, . . . , et−1, z1, . . . , zt−1) =

(b) [3 pts] State the modified Observe update. ©No Change

P (Xt|e1, . . . , et, z1, . . . , zt) =
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Next, consider the graph below where the Zi variables are unobserved.

X1 X2 X3

Z1 Z2 Z3

E1 E2 E3

(c) [3 pts] State the modified Elapse Time update. © No Change

P (Xt|e1, . . . , et−1) =

(d) [3 pts] State the modified Observe update. ©No Change

P (Xt|e1, . . . , et) =

Finally, consider a graph where the newly introduced variables are unobserved and influenced by the evidence nodes.

X1 X2 X3

Z1 Z2 Z3

E1 E2 E3

(e) [3 pts] State the modified Elapse Time update. © No Change

P (Xt|e1, . . . , et−1) =

(f) [3 pts] State the modified Observe update. © No Change

P (Xt|e1, . . . , et) =
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Q4. [11 pts] Dual Perceptron CSPs
In this question, we formulate the dual perceptron algorithm as a constraint satisfaction problem (CSP). We have
a binary classification problem with classes +1 and −1 and a set of n training points, x1, x2, ..., xn with labels
yi ∈ {−1,+1}.

Recall that the dual perceptron algorithm takes as input a kernel function K(xi, xj) defined on all pairs of training
points xi and xj , estimates an αi for each training point xi, and predicts the class of a point z using hα(z) =∑n
i=1 αiK(xi, z), classifying z as positive (+1) if hα(a) ≥ 0, and negative (−1) otherwise.

Let the αi variables of the dual perceptron be the variables in a CSP, with domains restricted to {−1, 0, 1}. Each
training point xi induces a constraint ci requiring that it is correctly classified with a margin of at least 1; i.e.,
yihα(xi) ≥ 1.

For this problem, we work with a predefined kernel function K(xi, xj). The value of the kernel function (left) for
the training points and their labels (right) are given in the tables below. In the kernel table, the jth entry in the ith

row is the value of K(xi, xj).

x1 x2 x3 x4
x1 1 0 0 -1
x2 0 4 -2 -2
x3 0 -2 1 1
x4 -1 -2 1 2

i 1 2 3 4
yi -1 -1 +1 +1

(a) [2 pts] Write each constraint ci as an inequality in terms of the variables α. (c1 has been completed for you.)

c1 α1 − α4 ≤ −1 c3

c2 c4

(b) We now randomly initialize to the full assignment α = (1,−1, 0,−1).

(i) [3 pts] For a constraint of the form a ≥ b, define the constraint violation margin (CVM) as the difference
b− a. For each of the above constraints, circle either Satisfied or Violated and compute the CVM.

Satisfied? CVM Satisfied? CVM

c1 Satisfied Violated c3 Satisfied Violated

c2 Satisfied Violated c4 Satisfied Violated

(ii) [4 pts] We decide to run a variation of the min-conflicts algorithm. Recall that min-conflicts begins with
a full assignment of all variables and tries to get all constraints satisfied by iteratively modifying the
assignment.

In our variant of the algorithm, a single iteration consists of selecting the currently most violated constraint—
i.e., the constraint with the highest CVM—and then reassigning all variables that are part of the constraint
to values such that the new CVM for the selected constraint is minimized.

Starting from the assignment above (α = (1,−1, 0,−1)), run a single iteration of this algorithm. Indicate
which constraint ci is selected, then compute the updated assignment α′ and the updated CVM for the
selected constraint ci. Finally, indicate whether or not after this single iteration all constraints have been
satisfied (and the algorithm terminates).

10



Selected ci α′1 α′2 α′3 α′4 Updated CVM Terminated?

Yes No

(iii) [2 pts] Suppose we are given a solution to this CSP of α∗ = (−1,−1,+1,+1). For each test point zi whose
kernel values with each training point are given in the table below, compute hα∗(zi) and the predicted
classification for zi.

K(x1, zi) K(x2, zi) K(x3, zi) K(x4, zi) hα∗(zi) Class prediction?

z1 3 0 -2 1

z2 -2 1 2 -2
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Q5. [18 pts] Generalization
We consider the following different classifiers for classification of samples in a 2-dimensional feature space.

PNoBias Linear perceptron without a bias term (fea-
tures

[
x1 x2

]ᵀ
)

PBias Linear perceptron with a bias term (features[
1 x1 x2

]ᵀ
)

PQuad Kernel perceptron with the quadratic kernel
function K(x, z) = (1 + x · z)2

PCutoff Kernel perceptron with the kernel function
K(x, z) = max{0, 0.01− ||x− z||2} (||a− b||2 is the
Euclidean distance between a and b)

1NN 1-nearest neighbor classifier

3NN 3-nearest neighbor classifier

(a) [8 pts] In each of the plots below you are given points from two classes, shown as filled rectangles and open
circles. For each plot, fill in the bubble next to each classifier that will be able to perfectly classify all of the
training data (or, if none, mark “None of these will classify the data perfectly”).

Note that when computing the nearest neighbors for a training data point, the training data point will be its
own nearest neighbor.
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12



(b) (i) [5 pts] Suppose you train a classifier and test it on a held-out validation set. It gets 80% classification
accuracy on the training set and 20% classification accuracy on the validation set.

From what problem is your model most likely suffering?

# Underfitting # Overfitting

Fill in the bubble next to any measure of the following which could reasonably be expected to improve
your classifier’s performance on the validation set.

# Add extra features # Remove some features

Briefly justify:

# Collect more training data # Throw out some training data

Assuming features are outcome counts (k is the Laplace smoothing parameter controlling the number of
extra times you “pretend” to have seen an outcome in the training data):

# Increase k # Decrease k (assuming k > 0 currently)

Assuming your classifier is a Bayes’ net:

# Add edges # Remove edges

(ii) [3 pts] Suppose you train a classifier and test it on a held-out validation set. It gets 30% classification
accuracy on the training set and 30% classification accuracy on the validation set.

From what problem is your model most likely suffering?

# Underfitting # Overfitting

Fill in the bubble next to any measure of the following which could reasonably be expected to improve
your classifier’s performance on the validation set.

# Add extra features # Remove some features
Briefly justify:

# Collect more training data # Throw out some training data

(iii) [2 pts] Your boss provides you with an image dataset in which some of the images contain your company’s
logo, and others contain competitors’ logos. You are tasked to code up a classifier to distinguish your
company’s logos from competitors’ logos. You complete the assignment quickly and even send your boss
your code for training the classifier, but your boss is furious. Your boss says that when running your code
with images and a random label for each of the images as input, the classifier achieved perfect accuracy
on the training set. And this happens for all of the many random labelings that were generated.

Do you agree that this is a problem? Justify your answer.
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Q6. [17 pts] Fun with Probability
In this question you will be asked to complete a table specifying a count of samples drawn from a probability distri-
bution, and subsequently answer questions about Bayes’ nets constructed from the table using maximum likelihood
techniques.

(a) [8 pts] The table below shows a count of samples drawn from a distribution over 4 variables: A, B, C and D.
As each of the 4 variables is binary, there are 16 possible values a sample can take on. The counts for 15 of
these have been recorded in the table below, but the remaining one is missing.

Calculate the remaining value such that a maximum likelihood estimate of the joint probability distribution
over the 4 variables below will have the following properties: A ⊥⊥ D |C and B ⊥⊥ D |C. You must show work
in order to receive credit.

Hint: For this example just enforcing B ⊥⊥ D |C is sufficient to find n. (I.e., the numbers in this examples are
chosen such that after enforcing B ⊥⊥ D |C the n you found will automatically also make A ⊥⊥ D |C hold true.)

Sample
A B C D Count

+a +b +c +d n
−a +b +c +d 18
+a −b +c +d 3
−a −b +c +d 9
+a +b −c +d 6
−a +b −c +d 2
+a −b −c +d 0
−a −b −c +d 8
+a +b +c −d 6
−a +b +c −d 6
+a −b +c −d 1
−a −b +c −d 3
+a +b −c −d 18
−a +b −c −d 6
+a −b −c −d 0
−a −b −c −d 24

n =
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(b) [3 pts] Draw a Bayes’ net that makes exactly the 2 independence assumptions indicated by the set of samples
shown above: A ⊥⊥ D |C and B ⊥⊥ D |C. Make sure it doesn’t make any additional independence assumptions.

A B

C D

(c) [6 pts] Now we run maximum likelihood learning of the parameters for each of the Bayes’ nets below from
the data on the previous page. The result is four learned distributions P (1)(A,B,C,D), P (2)(A,B,C,D),
P (3)(A,B,C,D), P (4)(A,B,C,D). We also define another distribution P (0)(A,B,C,D) which is obtained by
renormalizing the table on the previous page. Fill in the bubble for every true statement below.

Hint: You shouldn’t need to inspect the numbers in the table on the previous page. The key information about
the table on the previous page is that the numbers are such that P (0)(A,B,C,D) satisfies A ⊥⊥ D | C and
B ⊥⊥ D | C, but doesn’t satisfy any other independence assumptions.

P (1)

A B

C

D

# P (0)(B) = P (1)(B) # P (0)(D | C) = P (1)(D | C) # P (0)(A,B) = P (1)(A,B)

P (2)

A B

C

D

# P (0)(B) = P (2)(B) # P (0)(D | C) = P (2)(D | C) # P (0)(A,B) = P (2)(A,B)

P (3)

A B

C

D

# P (0)(B) = P (3)(B) # P (0)(D | C) = P (3)(D | C) # P (0)(A,B) = P (3)(A,B)

P (4)

A B

C

D

# P (0)(B) = P (4)(B) # P (0)(D | C) = P (4)(D | C) # P (0)(A,B) = P (4)(A,B)
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Q7. [5 pts] Games
Consider a zero-sum game with two players, one maximizing agent and one minimizing agent, in which the ordering
of moves is no longer deterministic. Each turn, a coin is flipped in order to determine which agent gets to make a
move during that time step.

Consider the game tree below encoding the result of playing for two turns. It is currently the maximizer’s move, so
the top node is a max node, but we don’t know which agent is going to play on the next turn, so we’ve replaced
those nodes with boxes. Draw a new game tree that consists of only the traditional min, max, and expecti-nodes
that models this situation.

-2 -5 4 7 3 6 -3 -1 5
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Q8. [6 pts] Pruning
Pacman has a new kind of magic that allows him to look ahead during game search. Concretely, for a given node
he can call a function Get-Lowest-Avg-Highest(node) which tells him the lowest, L, highest, H, and average, A,
values of all leaves below that node in the tree.

Below is some modified code for performing alpha-beta pruning in this new situation. Select the choices that result
in maximal pruning while still preserving that the correct value is found.

function Max-Value(node, α, β)
if node is leaf then

return Value(node)

(L,A,H)← Get-Lowest-Avg-Highest(node)

if (1) then

return H
v ← −∞
for child ← Children(node) do

v ←Max(v,Min-Value(child , α, β))
if v == H then

return v
if v ≥ β then

return v
α←Max(α, v)

return v

function Min-Value(node, α, β)
if node is leaf then

return Value(node)

(L,A,H)← Get-Lowest-Avg-Highest(node)

if (2) then

return L
v ←∞
for child ← Children(node) do

v ←Min(v,Max-Value(child , α, β))
if v == L then

return v
if v ≤ α then

return v
β ←Min(β, v)

return v

(1)

# L < α

# L < β

# L > α

# L > β

# H < α

# H < β

# H > α

# H > β

# A < α

# A < β

# A > α

# A > β

(2)

# L < α

# L < β

# L > α

# L > β

# H < α

# H < β

# H > α

# H > β

# A < α

# A < β

# A > α

# A > β
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