
CS 188
Spring 2013

Introduction to
Artificial Intelligence Midterm 1

• You have approximately 2 hours.

• The exam is closed book, closed notes except your one-page crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

First name

Last name

SID

edX username

First and last name of student to your left

First and last name of student to your right

For staff use only:
Q1. Warm-Up /1
Q2. CSPs: Midterm 1 Staff Assignments /17
Q3. Solving Search Problems with MDPs /11
Q4. X Values /10
Q5. Games with Magic /23
Q6. Pruning and Child Expansion Ordering /10
Q7. A* Search: Parallel Node Expansion /28

Total /100

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

Q1. [1 pt] Warm-Up

Circle the CS188 mascot

3

Q2. [17 pts] CSPs: Midterm 1 Staff Assignments
CS188 Midterm I is coming up, and the CS188 staff has yet to write the test. There are a total of 6 questions on
the exam and each question will cover a topic. Here is the format of the exam:

• q1. Search

• q2. Games

• q3. CSPs

• q4. MDPs

• q5. True/False

• q6. Short Answer

There are 7 people on the course staff: Brad, Donahue, Ferguson, Judy, Kyle, Michael, and Nick. Each of them
is responsible to work with Prof. Abbeel on one question. (But a question could end up having more than one
staff person, or potentially zero staff assigned to it.) However, the staff are pretty quirky and want the following
constraints to be satisfied:

(i) Donahue (D) will not work on a question together with Judy (J).

(ii) Kyle (K) must work on either Search, Games or CSPs

(iii) Michael (M) is very odd, so he can only contribute to an odd-numbered question.

(iv) Nick (N) must work on a question that’s before Michael (M)’s question.

(v) Kyle (K) must work on a question that’s before Donahue (D)’s question

(vi) Brad (B) does not like grading exams, so he must work on True/False.

(vii) Judy (J) must work on a question that’s after Nick (N)’s question.

(viii) If Brad (B) is to work with someone, it cannot be with Nick (N).

(ix) Nick (N) cannot work on question 6.

(x) Ferguson (F) cannot work on questions 4, 5, or 6

(xi) Donahue (D) cannot work on question 5.

(xii) Donahue (D) must work on a question before Ferguson (F)’s question.

4

(a) [2 pts] We will model this problem as a constraint satisfaction problem (CSP). Our variables correspond to each
of the staff members, J, F, N, D, M, B, K, and the domains are the questions 1, 2, 3, 4, 5, 6. After applying
the unary constraints, what are the resulting domains of each variable? (The second grid with variables and
domains is provided as a back-up in case you mess up on the first one.)

B 5
D 1 2 3 4 6
F 1 2 3
J 1 2 3 4 5 6
K 1 2 3
N 1 2 3 4 5
M 1 3 5

(b) [2 pts] If we apply the Minimum Remaining Value (MRV) heuristic, which variable should be assigned first?

Brad – because he has the least values left in his domain.

(c) [3 pts] Normally we would now proceed with the variable you found in (b), but to decouple this question from
the previous one (and prevent potential errors from propagating), let’s proceed with assigning Michael first.
For value ordering we use the Least Constraining Value (LCV) heuristic, where we use Forward Checking to
compute the number of remaining values in other variables domains. What ordering of values is prescribed by
the LCV heuristic? Include your work—i.e., include the resulting filtered domains that are different for the
different values.

Michael’s value will be assigned as 5, 3, 1, in that order.

Why these variables? They are the only feasible variables for Michael. Why this order? This is the increasing
order of the number of constraints on each variable.

The only binary constraint incolving Michael is “Nick (N) must work on a question that’s before Michael (M)’s
question.” So, only Nick’s domain is affected by forward checking on these assignments, and it will change
from {1, 2, 3, 4, 5} to {1, 2, 3, 4}, {1, 2}, and { } for the assignments 5, 3, 1, respectively.

(d) Realizing this is a tree-structured CSP, we decide not to run backtracking search, and instead use the efficient
two-pass algorithm to solve tree-structured CSPs. We will run this two-pass algorithm after applying the unary
constraints from part (a). Below is the linearized version of the tree-structured CSP graph for you to work with.

(i) [6 pts] First Pass: Domain Pruning. Pass from right to left to perform Domain Pruning. Write the
values that remain in each domain below each node in the figure above.

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

5

Remaining values in each domain after the domain pruning right-to-left pass:
Kyle: 1
Donahue: 1,2
Ferguson: 1,2,3
Judy: 2,3,4,5,6
Nick: 1,2,3,4
Brad: 5
Michael: 1,3,5

(ii) [4 pts] Second Pass: Find Solution. Pass from left to right, assigning values for the solution. If there
is more than one possible assignment, choose the highest value.

Assigned Values after the left-to-right pass:

Kyle: 1
Donahue: 2
Ferguson: 3
Judy: 6
Nick: 4
Brad: 5
Michael: 5

6

Q3. [11 pts] Solving Search Problems with MDPs
The following parts consider a Pacman agent in a deterministic environment. A goal state is reached when there are
no remaining food pellets on the board. Pacman’s available actions are {N,S,E,W}, but Pacman can not move
into a wall. Whenever Pacman eats a food pellet he receives a reward of +1.

Assume that pacman eats a food pellet as soon as he occupies the location of the food pellet—i.e., the reward
is received for the transition into the square with the food pellet.

Consider the particular Pacman board states shown below. Throughout this problem assume that V0(s) = 0 for
all states, s. Let the discount factor, γ = 1.

State A State B

(a) [2 pts] What is the optimal value of state A, V ∗(A)?
1

(b) [2 pts] What is the optimal value of state B, V ∗(B)?
1
The reason the answers are the same for both (b) and (a) is that there is no penalty for existing. With a
discount factor of 1, eating the food at any future step is just as valuable as eating it on the next step. An
optimal policy will definitely find the food, so the optimal value of any state is always 1.

(c) [2 pts] At what iteration, k, will Vk(B) first be non-zero?

5
The value function at iteration k is equivalent to the maximum reward possible within k steps of the state in
question, B. Since the food pellet is exactly 5 steps away from Pacman in state B, V5(B) = 1 and VK<5(B) = 0.

(d) [2 pts] How do the optimal q-state values of moving W and E from state A compare? (choose one)

© Q∗(A,W) > Q∗(A,E) © Q∗(A,W) < Q∗(A,E) Q∗(A,W) = Q∗(A,E)

Once again, since γ = 1, the optimal value of every state is the same, since the optimal policy will eventually
eat the food.

(e) [3 pts] If we use this MDP formulation, is the policy found guaranteed to produce the shortest path from
pacman’s starting position to the food pellet? If not, how could you modify the MDP formulation to guarantee
that the optimal policy found will produce the shortest path from pacman’s starting position to the food pellet?

No. The Q-values for going West and East from state A are equal so there is no preference given to the
shortest path to the goal state. Adding a negative living reward (example: -1 for every time step) will help
differentiate between two paths of different lengths. Setting γ < 1 will make rewards seen in the future worth
less than those seen right now, incentivizing Pacman to arrive at the goal as early as possible.

7

Q4. [10 pts] X Values
Instead of the Bellman update equation, consider an alternative update equation, which learns the X value function.
The update equation, assuming a discount factor γ = 1, is shown below:

Xk+1(s)← max
a

∑
s′

T (s, a, s′)

[
R(s, a, s′) + max

a′

∑
s′′

T (s′, a′, s′′) [R(s′, a′, s′′) +Xk(s′′)]

]

(a) [6 pts] Assuming we have an MDP with two states, S1, S2, and two actions, a1, a2, draw the expectimax tree
rooted at S1 that corresponds to the alternative update equation.

!"#

!"#

!$# !"# !$#

%"# %$#

The leaf nodes above will be the values of the previous iteration of the alternate update equation. Namely, if
the value of the tree is Xk+1(S1), then the leaf nodes from left to right correspond to Xk(S1), Xk(S2), Xk(S1),
Xk(S2), etc.

(b) [4 pts] Write the mathematical relationship between the Xk-values learned using the alternative update equa-
tion and the Vk-values learned using a Bellman update equation, or write None if there is no relationship.

Xk(s) = V2k(s),∀s

The thing to demonstrate here is that X is doing two-step lookahead relative to V .

Why?
X0(s) = V0(s)

Run an iteration to update X. This is the same as updating V for two iterations. Hence,

X1(s) = V2(s)

Run another iteration to update X. This is the same as updating V for two iterations. Hence,

X2(s) = V4(s)

.

. . .

Hence,
Xk(s) = V2k(s)

.

8

Q5. [23 pts] Games with Magic
(a) Standard Minimax

(i) [2 pts] Fill in the values of each of the nodes in the following Minimax tree. The upward pointing trapezoids
correspond to maximizer nodes (layer 1 and 3), and the downward pointing trapezoids correspond to
minimizer nodes (layer 2). Each node has two actions available, Left and Right.

(ii) [1 pt] Mark the sequence of actions that correspond to Minimax play.

(b) Dark Magic

Pacman (= maximizer) has mastered some dark magic. With his dark magic skills Pacman can take control over
his opponent’s muscles while they execute their move — and in doing so be fully in charge of the opponent’s
move. But the magic comes at a price: every time Pacman uses his magic, he pays a price of c—which is
measured in the same units as the values at the bottom of the tree.

Note: For each of his opponent’s actions, Pacman has the choice to either let his opponent act (optimally
according to minimax), or to take control over his opponent’s move at a cost of c.

(i) [3 pts] Dark Magic at Cost c = 2

Consider the same game as before but now Pacman has access to his magic at cost c = 2. Is it optimal
for Pacman to use his dark magic? If so, mark in the tree below where he will use it. Either way, mark
what the outcome of the game will be and the sequence of actions that lead to that outcome.

Pacman goes right and uses dark magic to get 7-2=5. Not using dark magic would result in the normal minimax
value of 3. Going left and using dark magic would have resulted in 6-2=4. So, in either case using magic benefits

Pacman, but using it when going right is best.

9

(ii) [3 pts] Dark Magic at Cost c = 5

Consider the same game as before but now Pacman has access to his magic at cost c = 5. Is it optimal
for Pacman to use his dark magic? If so, mark in the tree below where he will use it. Either way, mark
what the outcome of the game will be and the sequence of actions that lead to that outcome.

Pacman doesn’t use dark magic. Going left and using dark magic would result in 6-5=1, and going right and using
dark magic would result in 7-5=2, while not using dark magic results in 3.

(iii) [7 pts] Dark Magic Minimax Algorithm

Now let’s study the general case. Assume that the minimizer player has no idea that Pacman has the
ability to use dark magic at a cost of c. I.e., the minimizer chooses their actions according to standard
minimax. You get to write the pseudo-code that Pacman uses to compute their strategy. As a starting
point / reminder we give you below the pseudo-code for a standard minimax agent. Modify the pseudo-
code such that it returns the optimal value for Pacman. Your pseudo-code should be sufficiently general
that it works for arbitrary depth games.

10

function Max-Value(state)
if state is leaf then

return Utility(state)
end if
v ← −∞
for successor in Successors(state) do

v ← max(v,Min-Value(successor))
end for
return v

end function

function Min-Value(state)
if state is leaf then

return Utility(state)
end if
v ←∞
for successor in Successors(state) do

v ← min(v,Max-Value(successor))
end for
return v

end function

function Max-Value(state)
if state is leaf then

return (Utility(state), Utility(state))
end if
vmin ← −∞
vmax ← −∞
for successor in Successors(state) do

vNextmin, vNextmax ←Min-Value(successor)
vmin ← max(vmin, vNextmin)
vmax ← max(vmax, vNextmax)

end for
return (vmin, vmax)

end function

function Min-Value(state)
if state is leaf then

return (Utility(state), Utility(state))
end if
vmin ←∞
min move vmax ← −∞
vmagic max ← −∞
for state in Successors(state) do

vNextmin, vNextmax ←Max-Value(successor)
if vmin > vNextmin then

vmin ← vNextmin

min move vmax ← vNextmax

end if
vmagic max ← max(vNextmax, vmagic max)

end for
vmax ← max(min move vmax, vmagic max − c)
return (vmin, vmax)

end function

The first observation is that the maximizer and minimizer are getting different values from the game. The
maximizer gets the value at the leaf minus c*(number of applications of dark magic), which we denote by
vmax. The minimizer, as always, tries to minimize the value at the leaf, which we denote by vmin.

In Max− V alue, we now compute two things.

(1) We compute the max of the children’s vmax values, which tells us what the optimal value obtained by
the maximizer would be for this node.

(2) We compute the max of the children’s vmin values, which tells us what the minimizer thinks would
happen in that node.

In Min− V alue, we also compute two things.

(1) We compute the min of the children’s vmin values, which tells us what the minimizer’s choice would
be in this node, and is being tracked by the variable vmin. We also keep track of the value the maximizer
would get if the minimizer got to make their move, which we denote by min move vmax.

(2) We keep track of a variable vmagic max which computes the maximum of the children’s vmax.

If the maximizer applies dark magic he can guarantee himself vmagic max − c. We compare this with
the min move vmax from (1) and set vmax to the maximum of the two.

11

(iv) [7 pts] Dark Magic Becomes Predictable

The minimizer has come to the realization that Pacman has the ability to apply magic at cost c. Hence the
minimizer now doesn’t play according the regular minimax strategy anymore, but accounts for Pacman’s
magic capabilities when making decisions. Pacman in turn, is also aware of the minimizer’s new way of
making decisions.

You again get to write the pseudo-code that Pacman uses to compute his strategy. As a starting point /
reminder we give you below the pseudo-code for a standard minimax agent. Modify the pseudocode such
that it returns the optimal value for Pacman.

function Max-Value(state)
if state is leaf then

return Utility(state)
end if
v ← −∞
for successor in Successors(state) do

v ← max(v,Min-Value(successor))
end for
return v

end function

function Min-Value(state)
if state is leaf then

return Utility(state)
end if
v ←∞
for successor in Successors(state) do

v ← min(v,Max-Value(successor))
end for
return v

end function

function Min-Value(state)
if state is leaf then

return Utility(state)
end if
v ←∞
vm ← −∞
for state in Successors(state) do

temp←Max-Value(successor)
v ← min(v, temp)
vm ← max(vm, temp)

end for
return max(v, vm − c)

end function

12

Q6. [10 pts] Pruning and Child Expansion Ordering
The number of nodes pruned using alpha-beta pruning depends on the order in which the nodes are expanded. For
example, consider the following minimax tree.

In this tree, if the children of each node are expanded from left to right for each of the three nodes then no pruning
is possible. However, if the expansion ordering were to be first Right then Left for node A, first Right then Left for
node C, and first Left then Right for node B, then the leaf containing the value 4 can be pruned. (Similarly for first
Right then Left for node A, first Left then Right for node C, and first Left then Right for node B.)

For the following tree, give an ordering of expansion for each of the nodes that will maximize the number of leaf
nodes that are never visited due the search (thanks to pruning). For each node, draw an arrow indicating
which child will be visited first. Cross out every leaf node that never gets visited.
Hint: Your solution should have three leaf nodes crossed out and indicate the child ordering for 6 of the 7 internal
nodes.

The thing to understand here is how pruning works conceptually. A node is pruned from under a max node if it
“knows” that the min node above it has a better – smaller – value to pick than the value that the max node just
found. Similarly, a node is pruned from under a min node if it knows that the max node above it has a better –
larger – value to pick than the value that the min node just found.

13

Q7. [28 pts] A* Search: Parallel Node Expansion
Recall that A* graph search can be implemented in pseudo-code as follows:

1: function A*-Graph-Search(problem, fringe)
2: closed ← an empty set
3: fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
4: loop do
5: if fringe is empty then return failure
6: node← Remove-Front(fringe)
7: if Goal-Test(problem, State[node]) then return node
8: if State[node] is not in closed then
9: add State[node] to closed

10: child-nodes← Expand(node, problem)
11: fringe← Insert-All(child-nodes, fringe)

You notice that your successor function (Expand) takes a very long time to compute and the duration can vary a lot
from node to node, so you try to speed things up using parallelization. You come up with A*-Parallel, which uses
a “master” thread which runs A*-Parallel and a set of n ≥ 1 “workers”, which are separate threads that execute
the function Worker-Expand which performs a node expansion and writes results back to a shared fringe. The
master thread issues non-blocking calls to Worker-Expand, which dispatches a given worker to begin expanding a
particular node.1 The Wait function called from the master thread pauses execution (sleeps) in the master thread
for a small period of time, e.g., 20 ms. The fringe for these functions is in shared memory and is always passed by
reference. Assume the shared fringe object can be safely modified from multiple threads.

A*-Parallel is best thought of as a modification of A*-Graph-Search. In lines 5-9, A*-Parallel first waits
for some worker to be free, then (if needed) waits until the fringe is non-empty so the worker can be assigned the
next node to be expanded from the fringe. If all workers have become idle while the fringe is still empty, this means
no insertion in the fringe will happen anymore, which means there is no path to a goal so the search returns failure.
(This corresponds to line 5 of A*-Graph-Search). Line 16 in A*-Parallel assigns an idle worker thread to
execute Worker-Expand in lines 17-19. (This corresponds to lines 10-11 of A*-Graph-Search.) Finally, lines
11-13 in the A*-Parallel, corresponding to line 7 in A*-Graph-Search is where your work begins. Because there
are workers acting in parallel it is not a simple task to determine when a goal can be returned: perhaps one of the
busy workers was just about to add a really good goal node into the fringe.

1: function A*-Parallel(problem, fringe, workers)
2: closed ← an empty set
3: fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
4: loop do
5: while All-Busy(workers) do Wait
6: while fringe is empty do
7: if All-Idle(workers) and fringe is empty then
8: return failure
9: else Wait

10: node← Remove-Front(fringe)
11: if Goal-Test(problem, State[node]) then
12: if Should-Return(node, workers, fringe) then
13: return node
14: if State[node] is not in closed then
15: add State[node] to closed
16: Get-Idle-Worker(workers).Worker-Expand(node, problem, fringe)

17: function Worker-Expand(node, problem, fringe)
18: child-nodes← Expand(node, problem)
19: fringe← Insert-All(child-nodes, fringe)

1A non-blocking call means that the master thread continues executing its code without waiting for the worker to return from the call
to the worker.

14

Consider the following possible implementations of the Should-Return function called before returning a goal node
in A*-Parallel:

I function Should-Return(node, workers, fringe)
return true

II function Should-Return(node, workers, fringe)
return All-Idle(workers)

III function Should-Return(node, workers, fringe)
fringe← Insert(node, fringe)
return All-Idle(workers)

IV function Should-Return(node, workers, fringe)
while not All-Idle(workers) do Wait
fringe← Insert(node, fringe)
return F-Cost[node] == F-Cost[Get-Front(fringe)]

For each of these, indicate whether it results in a complete search algorithm, and whether it results in an optimal
search algorithm. Give a brief justification for your answer (answers without a justification will receive zero credit).
Assume that the state space is finite, and the heuristic used is consistent.

(a) (i) [4 pts] Implementation I

Optimal? Yes / No . Justify your answer:

Suppose we have a search problem with two paths to the single goal node. The first path is the optimal
path, but nodes along this path take a really long time to expand. The second path is suboptimal and
nodes along this path take very little time to expand. Then this implementation will return the suboptimal
solution.

Complete? Yes / No. Justify your answer:

Parallel-A* will keep expanding nodes until either (a) all workers are idle (done expanding) and the
fringe is empty, or (b) a goal node has been found and returned (this implementation of Should-Return
returns a goal node unconditionally when found). So, like standard A*-Graph-Search, it will search all
reachable nodes until it finds a goal.

(ii) [4 pts] Implementation II

Optimal? Yes / No . Justify your answer:

Not complete (see below), therefore not optimal.

Complete? Yes / No . Justify your answer:

Suppose there is just one goal node and it was just popped off the fringe by the master thread. At this
time a worker can still be busy expanding some other node. When this happens this implementation
returns false and we’ve “lost” this goal node because we’ve already pulled it off the fringe, and a goal node
will never be returned since this was the only one.

(iii) [4 pts] Implementation III

Optimal? Yes / No . Justify your answer:

Optimality is not guaranteed. Suppose there is just a single node on the fringe and it is a suboptimal goal
node. Suppose further that a single worker is currently working on expanding the parent of an optimal goal
node. Then the master thread reaches line 10 and pulls the suboptimal goal node off the fringe. It then
begins running Goal-Test in line 11. At some point during the execution of Goal-Test, the single busy
worker pushes the optimal goal node onto the fringe and finishes executing Worker-Expand, thereby
becoming idle. Since it was the only busy worker when it was expanding, we now have All-Idle(workers)
and when the master thread finishes executing the goal test and runs Should-Return, the All-Idle
check will pass and the suboptimal goal node is returned.

Complete? Yes / No. Justify your answer:

15

All goal nodes will be put back into the fringe, so we never throw out a goal node. Because the state
space is finite and we have a closed set, we know that all workers will eventually be idle. Given these
two statements and the argument from completeness of Implementation I that all reachable nodes will be
searched (until a goal node is returned), we can guarantee a goal node will be returned.

(iv) [4 pts] Implementation IV

Optimal? Yes / No. Justify your answer:

This implementation guarantees that an optimal goal node is returned. After Waiting for all the workers
to become idle, we know that if there are any unexpanded nodes with lower F-cost than the goal node we
are currently considering returning they will now be on the fringe (by the consistent heuristic assumption).
Then, we re-insert the node into the fringe and return it only if it has F-cost equal to the node with the
lowest F-cost in the fringe after the insertion. Note that even if it was not the lowest F-cost node in the
fringe this time around, this might still be the optimal goal node. But not to worry; we have put it back
into the fringe ensuring that it can still be returned once we have expanded all nodes with lower F-cost.

Complete? Yes / No. Justify your answer:

Optimal (see above), therefore complete.

16

(b) Suppose we run A*-Parallel with implementation IV of the Should-Return function. We now make a
new, additional assumption about execution time: Each worker takes exactly one time step to expand a node
and push all of the successor nodes onto the fringe, independent of the number of successors (including if
there are zero successors). All other computation is considered instantaneous for our time bookkeeping in this
question.

A*-Parallel with the above timing properties was run with a single (1) worker on a search problem with the
search tree in the diagram below. Each node is drawn with the state at the left, the f -value at the top-right
(f(n) = g(n) + h(n)), and the time step on which a worker expanded that node at the bottom-right, with an
‘X’ if that node was not expanded. G is the unique goal node. In the diagram below, we can see that the start
node A was expanded by the worker at time step 0, then node B was expanded at time step 1, node C was
expanded at time step 2, node F was expanded at time step 3, node H was expanded at time step 4, node K
was expanded at time step 5, and node G was expanded at time step 6. Nodes D,E, I, J were never expanded.

WE
WWWf = 8

X
WF
WWWf = 3

3

WG
WWWf = 6

6

WK
WWWf = 5

5

WH
WWWf = 4

4

WB
WWWf = 1

1

WI
WWWf = 9

X
WJ
WWWf = 10

X

WC
WWWf = 2

2
WD
WWWf = 7

X

WA
WWWf = 0

0

In this question you’ll complete similar diagrams by filling in the node expansion times for the case of two and
three workers. Note that now multiple nodes can (and typically will!) be expanded at any given time.

(i) [6 pts] Complete the node expansion times for the case of two workers and fill in an ‘X’ for any node that
is not expanded.

WE
WWWf = 8

X
WF
WWWf = 3

2

WG
WWWf = 6

4

WK
WWWf = 5

3

WH
WWWf = 4

2

WB
WWWf = 1

1

WI
WWWf = 9

X
WJ
WWWf = 10

X

WC
WWWf = 2

1
WD
WWWf = 7

3

WA
WWWf = 0

0

(ii) [6 pts] Complete the node expansion times for the case of three workers and fill in an ‘X’ for any node
that is not expanded.

WE
WWWf = 8

2
WF
WWWf = 3

2

WG
WWWf = 6

4

WK
WWWf = 5

3

WH
WWWf = 4

2

WB
WWWf = 1

1

WI
WWWf = 9

3
WJ
WWWf = 10

3

WC
WWWf = 2

1
WD
WWWf = 7

1

WA
WWWf = 0

0

17

