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Q1. [17 pts| Bayes’ Nets Representation

(a) [8 pts] Graph Structure: Conditional Independence

Consider the Bayes’ net given below.

Remember that X Il Y reads as “X is independent of Y given nothing”, and X 1l Y|{Z, W} reads as “X is
independent of Y given Z and W.”

For each expression, fill in the corresponding circle to indicate whether it is True or False.

(i)  OTrue ®False It is guaranteed that A 1l B
An active path: A — B.

(i) @True (OFalse It is guaranteed that A 1L C
No active paths.

(iii)  OTrue @False It is guaranteed that A 1L D | E
An active path: A — B — E (observed) < D.

(iv)  QOTrue @False It is guaranteed that A 1L T | E
An active path: A — B — E(observed) <~ D — G — H — I.

(v)  QOTrue @False It is guaranteed that B 1L C' | I
An active path: B — E (descendent I observed) < F' «+ C.

(vi)  OTrue @False It is guaranteed that FF 1l A | H
An active path: F' — F (descendent H observed) < B «+ A.

(vii) @True (OFalse It is guaranteed that D 1L I | {E, G}
No active paths.

(viii)  OQTrue @False It is guaranteed that C' 1L H | G
An active path: C - FF — F — H.




(b) Marginalization and Conditioning

Consider a Bayes’ net over the random variables A, B, C, D, E with the structure shown below, with full joint
distribution P(A, B,C, D, E).

The following three questions describe different, unrelated situations (your answers to one question should not
influence your answer to other questions).

(i) [3 pts| Consider the marginal distribution P(A,B,C,E) =), P(A, B,C,d, E), where D was eliminated.
On the diagram below, draw the minimal number of arrows that results in a Bayes’ net structure that is
able to represent this marginal distribution. If no arrows are needed write “No arrows needed.”

Multiple solutions exist — each solution has
exactly the same set of conditional indepen-
dence assumptions as the graph shown. These
other solutions have the same set of edges,
but the directionality could be different in
such a way that every triple has the same ac-
tive/inactive properties as above. Concretely,
could change directionality of A—C, of A— B,
but not of both A — C and A — B at the same
time.

(ii) [3 pts] Assume we are given an observation: A = a. On the diagram below, draw the minimal number
of arrows that results in a Bayes’ net structure that is able to represent the conditional distribution
P(B,C,D,E | A=a). If no arrows are needed write “No arrows needed.”

Only one solution exists for this question. The
solution needs to have all edges in the original
graph, and then additional edges as needed to
ensure the same nodes are connected by active
paths (for when A is observed). A observed
doesn’t activate any paths, in fact all paths
through A are inactive with A observed, so no
additional edges needed.

(iii) [3 pts] Assume we are given an observations: D = d. On the diagram below, draw the minimal number
of arrows that results in a Bayes’ net structure that is able to represent the conditional distribution
P(A,B,C,E | D =d). If no arrows are needed write “No arrows needed.”

Multiple solutions exist. The most natural
choice is the one shown on the left. Other so-
lutions have the same set of conditional inde-
pendence assumptions as the graph shown on
the left.




Q2. [12 pts| Bayes’ Net Reasoning

P(X|D)
P(A|D, X) +d | +x | 0.7
+d | +x | +a | 0.9 +d | —x | 0.3
+d | 4z | —a | 0.1 —d | 4z | 0.8
+d | —x | +a | 0.8 P(D) —d | —z |02
4+d | —xz | —a | 0.2 0 +d | 0.1
—d | 4z | +a | 0.6 —d | 0.9 P(B|D)
—d | 4z | —a | 04 +d | +b | 0.7
—d | —xz | 4a | 0.1 +d | =b | 0.3
—d| -z | —a | 09 —d | +b | 0.5
—d | =b| 05

(a) [3 pts] What is the probability of having disease D and getting a positive result on test A?
P(+d, +a) =

Y. P(+d,z,+a) = Y P(+a| + d,z)P(xz| + d)P(+d) = P(+d)>., P(+a| + d,z)P(z| + d) = (0.1)((0.9)(0.7) +

(0.8)(0.3)) = 0.087

(b) [3 pts] What is the probability of not having disease D and getting a positive result on test A?

P(—d,4a) =
(0.9)((0-6)(0.8) + (0-1)(0-2)) = 045

(c) [3 pts] What is the probability of having disease D given a positive result on test A?

_ P(+a,+d) _ P(4a,+d) __ 0.087 - ,
P<+d| ™ a) o P(+a) — S, P(+a,d) — 0.087+0.45 ~ 0.162

(d) [3 pts] What is the probability of having disease D given a positive result on test B?

_ P(4b|+d)P(+d) _ P(+b|+d)P(+d) _ (0.7)(0.1) -
P<+d‘ + b) B P(+b) — S PHb[A)P(d) — (0.7)(0.1)+(0.5)(0.9) ~ 0.135

Y. P(—d,z,+a) = > P(+a| — d,z)P(z| — d)P(—d) = P(—d))>_, P(+a| — d,z)P(z| — d) =




Q3. [21 pts| Variable Elimination

(a) [9 pts] For the Bayes’ net below, we are given the query P(A,E | 4+¢). All variables have binary domains.
Assume we run variable elimination to compute the answer to this query, with the following variable elimination

ordering: B, D, G, F.

Complete the following description of the factors generated in this process:

After inserting evidence, we have the following factors to start out with:

P(A),P(B|A),P(+c), P(D|A, B,+c), P(E|D), P(F|D), P(G| + ¢, F)

When eliminating B we generate a new factor f; as follows:

fi(A, +¢, D) ZP (b|A)P(D|A, b, +c)

This leaves us with the factors:

P(A), P(+c¢), P(E|D),P(F|D),P(G|+ ¢, F), fi(A,+c, D)

When eliminating D we generate a new factor fs as follows:

f2(A,+¢,E,F) =Y P(E|d)P(F|d) fi(A, +c,d)
d

This leaves us with the factors:

P(A), P(+¢), P(G| + ¢, F), f2(A, +¢, E, F)

When eliminating G we generate a new factor f3 as follows:

3(+c, F) ZPJ|+(P

This leaves us with the factors:

P(A), P(+c), f2(A,+¢, E F), f3s(+c¢, F)




Let’s make sure to account for error propagation in our grading of this one.

When eliminating F' we generate a new factor fy as follows:

f4<Af +(,'., E) - Z fQ(A', +C, E? f)fl§(+ca f)
f

This leaves us with the factors:

P(A), P(+4c), fa(A,+c, E)

(b) [2 pts] Write a formula to compute P(A, E | +¢) from the remaining factors.

P(AE | +c¢) = Z{)(Ag,i(;i)ﬁgi(tCE)() or alternatively: P(A, E | +¢) o< P(A)P(+c)fa(A, +c, E) and include state-

ment that says renormalization is needed to obtain P(A, E | +c).

(c) [2 pts] Among f1, fa, f3, f4, which is the largest factor generated, and how large is it? Assume all variables have
binary domains and measure the size of each factor by the number of rows in the table that would represent
the factor.

‘ f2(A, +c, E, F) is the largest factor generated. It has 3 non-instantiated variables, hence 23 = 8 entries.

(d) [8 pts] Find a variable elimination ordering for the same query, i.e., for P(A, E | 4+c), for which the maximum
size factor generated along the way is smallest. Hint: the maximum size factor generated in your solution
should have only 2 variables, for a size of 22 = 4 table. Fill in the variable elimination ordering and the factors
generated into the table below.

Variable Eliminated Factor Generated
B f1(A, +¢, D)
G fa2(+e, F)
F f3(+¢, D)
D fa(A, +¢, E)

For example, in the naive ordering we used earlier, the first row in this table would have had the following two
entries: B, fi1(A,+¢, D).

Note: multiple orderings are possible. An ordering is good if it eliminates all non-query variables (B, D, F, G)
and its largest factor has only two variables.



Q4. [14 pts] Bayes’ Net Sampling

Assume you are given the following Bayes’ net and the corresponding distributions over the variables in the Bayes’
net.

P(C|A, B)

+c | +a | +b | .25
- | +a | +b | .75 P(D|C)
P(A) P(B) +c| -a | +b | .6 +d | +c | .5
a +a | 0.1 +b [ .7 < | -a|+b] 4 -d [ +c | .5
-a | 09 b | .3 +c | +a | -b .5 +d | -¢c | .8
- | +a | -b 5 -d -c | .2

(c)—(D) rela T2

-C -a -b 8

(a) [2 pts] Assume we receive evidence that A = 4a. If we were to draw samples using rejection sampling, on
expectation what percentage of the samples will be rejected?

1

samples will be rejected.

Since P(+a) = 75, we would expect that only 10% of the samples could be saved. Therefore, expected 90% of the

(b) [6 pts] Next, assume we observed both A = +a and D = +d. What are the weights for the following samples
under likelihood weighting sampling?

Sample Weight
(+a, —b,+c,+d) | P(+a)- P(+d| +¢) =0.1%0.5 = 0.05
(+a,—b,—c,+d) | P(+a)- P(+d| —c¢) =0.1%0.8 =0.08
(+a,+b, —c,+d) | P(+a) - P(+d| —¢) =0.1%0.8 = 0.08
(c) [2 pts] Given the samples in the previous question, estimate P(—b| + a, +d).

P(=b| + 4, +d) P(+a) - P(+d| + ¢) + P(+a) - P(+d| — ¢) 0.05 4+ 0.08 13
— a,+a) = = =57
’ P(+a) - P(+d|+c¢)+2- P(+a) - P(+d|—¢) 0.054+2-0.08 21

(d) [4 pts] Assume we need to (approximately) answer two different inference queries for this graph: P(C| + a)
and P(C|+ d). You are required to answer one query using likelihood weighting and one query using Gibbs
sampling. In each case you can only collect a relatively small amount of samples, so for maximal accuracy
you need to make sure you cleverly assign algorithm to query based on how well the algorithm fits the query.
Which query would you answer with each algorithm?

Algorithm Query Algorithm Query

Likelihood Weighting P(Cl+ a) Gibbs Sampling P(C|+d)

Justify your answer:

You should use Gibbs sampling to find the query answer P(C|+ d). This is because likelihood weighting only takes
upstream evidence into account when sampling. Therefore, Gibbs, which utilizes both upstream and downstream
evidence, is more suited to the query P(C|+ d) which has downstream evidence.




Q5. [28 pts| Probability, Bayes’ Nets and Decision Networks

It is Monday night, and Bob is finishing up preparing for the CS188 Midterm II that is coming up on Tuesday.
Bob has already mastered all the topics except one: Decision Networks. He is contemplating whether to spend the
remainder of his evening reviewing that topic (review), or just go to sleep (sleep). Decision Networks are either
going to be on the test (+d) or not be on the test (—d). His utility of satisfaction is only affected by these two
variables as shown below:

- D [ PD)
Td| 05
| 05

D A U(D,A)
+d | review 1000

-d | review 600
+d | sleep 0

-d | sleep 1500

(a) [5 pts] Maximum Expected Utility

Compute the following quantities:

‘ EU(review) = P(+d)U(+d, review) + P(—d)U(—d, review) = 0.5 % 1000 + 0.5 % 600 = 800

| EU(sleep) = P(+d)U (+4d, sleep) + P(~d)U(~d, sleep) = 0.5+ 0+ 0.5 1500 = 750

| MEU({}) = max(800,750) = 800

‘ Action that achieves M EU({}) = review

This result notwithstanding, you should get some sleep.



(b) [11 pts] The TA is on Facebook

The TAs happiness (H) is affected by whether decision networks are going to be on the exam. The happiness

(H) determines whether the TA posts on Facebook (+f) or doesn’t post on Facebook (—f). The prior on D
and utility tables remain unchanged.

F H | P(F|H)
+f | +h 0.6 D | P(D)
D A
-f| +h 0.4 a1 05
+f| -h 0.2 d! 05
-f| -h 0.8
U D A | U(D,A)
bt H D | P(H|D) +d | review 1000
+h | +d 0.95 -d | review 600
-h | +d | 0.05 +d | sleep 0
E +h | d 0.25 -d sleep 1500
-h | -d 0.75
Decision network. Tables that define the model are shown above.
D | F | P(DIF) F D | P(F|D) D H | P(D|H)
H | P(H) F | P(F) +d | +f 0.666 +f | +d 0.586 +d | +h 0.79
+h 0.6 +f | 0.44 -d | +f 0.334 ] +d 0.414 -d | +h 0.21
-h 0.4 -f| 0.56 +d | -f 0.370 +f | -d 0.300 +d | -h 0.06
-d | -f 0.630 ] -d 0.700 -d | -h 0.94

Tables computed from the first set of tables. Some of them might be convenient to answer the questions below.

Compute the following quantities:

EU (review|+ f) = P(+d|+ f)U(+d, review) 4+ P(—d|+ f)U(—d, review) = 0.666 x 1000+ 0.334 %600 = 666 +200.4 =
866.4

‘EU(sleep| + f) = P(+d| + [)U(+d, sleep) + P(—d| + f)U(—d, sleep) = 0.666 * 0 + 0.334 % 1500 = 501 ‘

‘ MEU({+f}) = max(866.4,501) = 866.4 ‘ ‘ Optimal Action({+f}) = review ‘

\ EU (review|— f) = P(+d|— f)U(+d, review)+P(—d|— f)U(—d, review) = 0.370%1000+0.630600 = 370+378 = 748 \

| EU(sleep| — f) = P(+d| — [)U(+d, sleep) + P(—d| — f)U(—d, sleep) = 0.370 + 0+ 0.630 + 1500 = 0+ 945 = 945 |

‘MEU({—f}) = max(748,945) = 945 ‘ ‘Optimal Action({—f}) = sleep ‘

\ VPI{F}) = P(+f)MEU({+f}) + P(—f)YMEU({—f}) — MEU({}) = 0.44 % 866.4 + 0.56 * 945 — 800 = 110.416

|

10



(c) VPI Comparisons

Now consider the case where there are n TAs. Each TA follows the same probabilistic models for happiness
(H) and posting on Facebook (F') as in the previous question.

(1)

[3pts] (OTrue @False VPI(H,|F)=0

Justify: F} is just a noisy version of H;. Hence finding out H; gives us more information about D even when
we have already observed Fj. This in turn will allow us to more often make the right decision between sleep
and review.

(i)

[3 pts] @True (OFalse VPI(Fy|Hy) =0

Justify:The parent variable of the utility node, D, is conditionally independent of F} given Hj.

(iii)

3 pts] (OTrue @®False VPI(F3|Fy, Fy) > VPI(Fy|Fy)

Justify:The F; variables give us noisy information about D. The more F; variables we get to observe, the
better chance we end up being able to make the right decision. The more F; variables we have already
observed, however, the less an additiona observation of a new variable F; will influence the distribution of D.

(iv)

[3 pts] @True (OFalse VPI(Fy,Fs,...,F,) <VPI(H,Hs,...,H,)

Justify:The F; variables are noisy versions of the H; variables, hence observing the H; variables is more valuable.
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Q6. [8 pts] Perceptron

You have decided to become a teacher. The only issue is that you don’t want to spend lots of time grading essays,
so instead you decide to grade them all with a linear classifier. Your classifier considers the number of 7-letter (f7)

and 8-letter words (fg) in an essay and then assigns a grade, either A or F, based on those two numbers. You have
four graded essays to learn from:

BIAS | f7 | fs | grade
1 2|1 |A(HH)
1 02| F()
1 112 ]AMH)
1 1[0 F()

(a) [2 pts] You decide to run perceptron and being optimistic about the students essay writing capabilities, you
decide to initialize your weight vector as (1,0,0). If the score from your classifier is greater than 0, it gives
an A, if it is O or lower, it gives an F. Fill in the resulting weight vector after having seen the first training
example and after having seen the second training example.

BIAS | f7 | fs
Initial 1 0|0
After first training example 1 010
After second training example 0 0| -2
Use the perceptron update rule.
(b) [2 pts] @True (OFalse The training data is linearly separable with the given features.

Justify:One justification is to draw the points in the 2-D plane, and show that a linear decision boundary
separates the classes. Another justification is to provide a weight vector w that classifies all data points
correctly, w = (—2.5,1,1) is such a weight vector.

(c) [4 pts] For each of the following decision rules, indicate whether there is a weight vector that represents the
decision rule. If “Yes” then include such a weight vector.

1. A paper gets an A if and only if it satisfies (f7 + fs > 7).
®Yes w=(—6.5,1,1) (ONo

2. A paper gets an A if and only if it satisfies (fr > 5 AND fg > 4).
OYes w= ®No

3. A paper gets an A if and only if it satisfies (f7 > 5 OR fs > 4).

OYes w= ®No

4. A paper gets an A if and only if it has between 4 and 6, inclusive, 7-letter words and between 3 and 5
8-letter words.

OYes w = ®No
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