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Q1. [12 pts] Particle Filtering

Pacman is trying to hunt a ghost in an infinite hallway with positions labeled as in the picture above. He’s become
more technologically savvy, and decided to locate find the ghosts actual position, St, using some sensors he set up.
From the sensors, Pacman can find, at each time step, a noisy reading of the ghost’s location, Ot. However, just
as Pacman has gained technology, so has the ghost. It is able to cloak itself at each time step, given by Ct, adding
extra noise to Pacman’s sensor readings.

Pacman has generated an error model, given in the table below, for the sensor depending on whether the ghost
is cloaked or not.

Pacman has also generated a dynamics model, given in the table below, that takes into account the position of
the ghost at the two previous timesteps.

Dynamics model: Observation model:

P (St|St−1, St−2) = F (D1, D2)
D1 = |St − St−1|
D2 = |St − St−2|

D1 D2 F(D1, D2)
0 0 0.7
0 1 0.2
0 2 0
1 0 0.3
1 1 0.3
1 2 0.5

P (Ot|St, Ct) = E(Ct, D)
D = |Ot − St|

C D E(C, D)
+ 0 0.4
+ 1 0.2
+ 2 0.1
- 0 0.6
- 1 0.2
- 2 0

(a) [2 pts] Assume that you currently have the following two particles: (S6 = 7, S7 = 8) and (S6 = 6, S7 = 6).
Compute the weights for each particle given the observations C6 = +, C7 = −, O6 = 5, O7 = 8:

(S6 = 7, S7 = 8) Pr(O6 = 5|C6 = +, S6 = 7) ∗ Pr(O7 = 8|C7 = −, S7 = 8) = 0.1 ∗ 0.6 = 0.06

(S6 = 6, S7 = 6) Pr(O6 = 5|C6 = +, S6 = 6) ∗ Pr(O7 = 8|C7 = −, S7 = 6) = 0.2 ∗ 0 = 0
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C P(C)
+ 0.5
- 0.5

(b) [4 pts] Assume that Pacman can no longer see whether the ghost is cloaked or not, but assumes that it will be
cloaked at each timestep with probability 0.5. Compute the weights for each particle given the observations
O6 = 5, O7 = 8:

For each of the particle’s states: we want to find Pr(ot|st), as this is the contribution to the weight of the
sample. However, we have C unobserved, so: Pr(ot|st) =

∑
ct
Pr(ot, ct|st) =

∑
ct
Pr(ct|st)Pr(ot|st, ct) =∑

ct
Pr(ct)Pr(ot|st, ct). Last equality is due to independence between Ct and St.

(S6 = 7, S7 = 8)
∑
c6
Pr(c6)Pr(O6 = 5|S6 = 7, c6) ∗

∑
c7
Pr(c7)Pr(O7 = 8|S7 = 8, c7) = 0.05 ∗ 0.5 = 0.025

(S6 = 6, S7 = 6)
∑
c6
Pr(c6)Pr(O6 = 5|S6 = 6, c6) ∗

∑
c7
Pr(c7)Pr(O7 = 8|S7 = 6, c7) = 0.2 ∗ 0.05 = 0.01

(c) [4 pts] To prevent error propagation, assume that after weighting the particles and resampling, one of the
particles you end up with is (S6 = 6, S7 = 7).

(i) [2 pts] What is the probability that after passing this particle through the dynamics model it becomes
(S7 = 6, S8 = 6)?
0. It’s invalid for a particle to start at S7 = 7 and after one transition, become S7 = 6.

(ii) [2 pts] What is the probability the particle becomes (S7 = 7, S8 = 8)?
0.5. This is just Pr(S8 = 8|S6 = 6, S7 = 7) = F (D1 = 1, D2 = 2) = 0.5.

(d) [2 pts] To again decouple this part from previous parts, assume that you have the following three particles with
the specified weights.

Particle weight
(S7 = 5, S8 = 6) .1
(S7 = 7, S8 = 6) .25
(S7 = 7, S8 = 7) .3

What is Pacman’s belief for the ghost’s position at time t = 8?

Position P(S8)

S8 = 5 0
.1+.25+.3 = 0

S8 = 6 .1+.25
.1+.25+.3 = .35

.65 = 7
13

S8 = 7 .3
.1+.25+.3 = .3

.65 = 6
13

S8 = 8 0
.1+.25+.3 = 0
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Q2. [15 pts] Probabilities
(a) [3 pts] Fill in the circles of all expressions that are equal to 1,

given no independence assumptions:

 ∑
a P (A = a | B)

# ∑
b P (A | B = b)

 ∑
a

∑
b P (A = a,B = b)

# ∑
a

∑
b P (A = a | B = b)

 ∑
a

∑
b P (A = a) P (B = b)

# ∑
a P (A = a) P (B = b)

# None of the above.

Probability distributions, including conditional distributions, sum to one. We are testing this axiom when applied
to multivariate distributions and conditionals.

(b) [3 pts] Fill in the circles of all expressions that are equal to P(A,B,C),
given no independence assumptions:

 P (A | B,C) P (B | C) P (C)

# P (C | A,B) P (A) P (B)

 P (A,B | C) P (C)

 P (C | A,B) P (A,B)

# P (A | B) P (B | C) P (C)

# P (A | B,C) P (B | A,C) P (C | A,B)

# None of the above.

We are testing the chain rule when applied to more than two variables.

(c) [3 pts] Fill in the circles of all expressions that are equal to P(A | B,C),
given no independence assumptions:

 P (A,B,C)∑
a P (A=a,B,C)

 P (B,C|A) P (A)
P (B,C)

 P (B|A,C) P (A|C)
P (B|C)

# P (B|A,C) P (A|C)
P (B,C)

# P (B|A,C) P (C|A,B)
P (B,C)

# P (A,B|C)
P (B|A,C)

# None of the above.

This is Bayes’ rule applied to distributions over multiple variables. P (A | B,C) = P (A,B,C)/P (B,C)

(d) [3 pts] Fill in the circles of all expressions that are equal to P(A | B),
given that A ⊥⊥ B | C:

# P (A|C) P (B|C)
P (B)

# P (A|C) P (B|C)
P (B|C)

 
∑

c P (A|C=c) P (B|C=c) P (C=c)∑
c′ P (B|C=c′) P (C=c′)

# P (A|B,C)
P (A|C)

 
∑

c P (B|A,C=c) P (A,C=c)

P (B)

#
∑

c P (A,C=c) P (B|C=c)∑
c′ P (A,B,C=c′)

# None of the above.

Apply Bayes’ rule to get P (A | B) = P (A,B)/P (B) =
∑
c P (A,B | C = c)P (C = c)/P (B) and conditional

independence P (A,B | C) = P (A | C) P (B | C)
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(e) [3 pts] Fill in the circles of all expressions that are equal to P(A,B,C),
given that A ⊥⊥ B | C and A ⊥⊥ C:

# P (A) P (B) P (C)

 P (A) P (B,C)

 P (A | B) P (B | C) P (C)

# P (A | B,C) P (B | A,C) P (C | A,B)

 P (A | C) P (B | C) P (C)

# P (A | C) P (B | C)

# None of the above.

If A ⊥⊥ B | C and A ⊥⊥ C it can be proven that A ⊥⊥ B but not that B ⊥⊥ C. Here is the proof:

P (A,B) =
∑
c

P (A,B | C = c)P (C = c)

=
∑
c

P (A | C = c)P (B | C = c)P (C = c)

= P (A)
∑
c

P (B | C = c)P (C = c)

= P (A)
∑
c

P (B,C = c)

= P (A) P (B)
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Q3. [15 pts] Need That CPT
For each of the following questions, mark the minimum set of variables whose associated probability table is needed
to answer the query.

For example, for part (a), the probability table associated with X is P (X), the probability table associated with Y
is P (Y | X), and the probability table associated with Z is P (Z | Y ). The query for part (a) (i) is P (X | Y ).

(a) [3 pts]

X"

Y"

Z"

A" B"

C"

D"

X"

Y"

Z"

X"

Y"

Z"

X"

Y"

Z"

(i) [1 pt] P (X | Y )  X  Y # Z

P (X | Y ) ∝Y P (Y | X)P (X)

(ii) [1 pt] P (X | Z)  X  Y  Z

Y is in between X and Z in the Bayes’ net, so the distribution for Y is needed to compute the query.

(iii) [1 pt] P (Y | Z)  X  Y  Z

Like in part (i), we compute the query using Bayes’ rule. However, because we do not directly know P (Y ), we
need to sum out over X.

(b) [3 pts]

X"

Y"

Z"

A" B"

C"

D"

X"

Y"

Z"

X"

Y"

Z"

X"

Y"

Z"

(i) [1 pt] P (X | Y )  X # Y # Z

P (X | Y ) is exactly the probability table for X.

(ii) [1 pt] P (X | Z)  X  Y  Z

Y is in between X and Z in the Bayes’ net, so the distribution for Y is needed to compute the query.

(iii) [1 pt] P (Z | X)  X  Y  Z

Same as in part (ii).
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(c) [3 pts]

X"

Y"

Z"

A" B"

C"

D"

X"

Y"

Z"

X"

Y"

Z"

X"

Y"

Z"

(i) [1 pt] P (X | Y )  X  Y  Z

Because we do not directly know P (Y | X), we need to sum out over Z to calculate it.

(ii) [1 pt] P (X | Z)  X # Y # Z

X is independent from Z, so P (X | Z) = P (X).

(iii) [1 pt] P (Y | Z)  X  Y # Z

ΣxP (X)P (Y | X,Z) = ΣxP (X | Z)P (Y | X,Z) = ΣxP (X,Y | Z) = P (Y | Z). Therefore, we only need the
probability tables for P (X) and P (Y | X,Z).

(d) [6 pts]

X"

Y"

Z"

A" B"

C"

D"

(i) [2 pts] P (X | Z)  X # Y # Z  A # B # C # D

X is independent from Z, so we only need to calculate P (X).

(ii) [2 pts] P (X | D)  X  Y  Z  A  B # C  D

Eliminating C requires us to join and sum over all factors involving c, which is
∑
c Pr(c | Z). This factor’s

value is 1 for any value of Z, since Pr(c | Z) is a distribution.

(iii) [2 pts] P (X | Z,D)  X  Y # Z  A # B # C  D

As in part (c)(iii), we do not need to sum out over Z in order to compute the query. Therefore, we don’t need
the probability table for Z, and as B and C are independent from X given Z, we don’t need their probability
tables either.
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Q4. [14 pts] Fun with Bayes Nets
(a) [6 pts] Consider a Bayes Net with the following graph:

 A B

C D

E

F

G

Which of the following are guaranteed to be true without making any additional conditional independence
assumptions, other than those implied by the graph? (Mark all true statements)

 P (A | C,E) = P (A | C)

# P (A,E | G) = P (A | G) ∗ P (E | G)

 P (A | B = b) = P (A)

# P (A | B,G) = P (A | G)

# P (E,G | D) = P (E | D) ∗ P (G | D)

 P (A,B | F ) = P (A | F ) ∗ P (B | F )

This question deals with (conditional) independence of a Bayes Net.
Option 1: A ⊥⊥ E | C, since with C observed no path between A and C is active.
Option 2: there’s no conditional independence between A and E given G, since A-C-E is active.
Option 3: A ⊥⊥ B, since no path between A and B is active.
Option 4: there’s no conditional independence between A and B given G, since the path A, B, G is an active.
Option 5: there’s no conditional independence between E and G, since E-F-G is active.
Option 6: A ⊥⊥ B | F , since A, B, F is active.
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(b) [8 pts] Now consider a Bayes Net with the following graph:

A

B C D E

F

G

The factors associated with the Bayes Net are P (A), P (B | A), P (C | A), P (D | A), P (E | A), P (F | B,C,D)
and P (G | F ). We will consider variable elimination to answer the query P (G | +e).
(i) [2 pts] Suppose the first variable we eliminate is A. Provide an expression for the resulting factor as a

function of the original factors.

f1(B,C,D,+e) =
∑
a P (a)P (B | a)P (C | a)P (D | a)P (+e | a)

(ii) [2 pts] Suppose the first variable we eliminate is B. Provide an expression for the resulting factor generated
as a function of the original factors.

f2(A,F,C,D) =
∑
b P (b | A)P (F | b, C,D)

(iii) [2 pts] Suppose the first variable we eliminate is F . Provide an expression for the resulting factor as a
function of the original factors.

f3(B,C,D,G) =
∑
f P (f | B,C,D)P (G | f)

(iv) [2 pts] Suppose we eliminated the variables A,B,C,D, F in that order, and the single remaining factor is
f(+e,G). How do we obtain P (G | +e) from this remaining factor? (Your answer should be in the form
of an equation.)

P (G | +e) = f(+e,G)∑
g f(+e,g)
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Q5. [12 pts] Value of Gambling and Bribery
The local casino is offering a new game. There are two biased coins that are indistinguishable in appearance. There
is a head-biased coin, which yields head with probability 0.8 (and tails with probability 0.2). There is a tail-biased
coin, which yields tail with probability 0.8 (and head with probability 0.2).

At the start of the game, the dealer gives you one of the two coins at random, with equal probability. You get to
flip that coin once. Then you decide if you want to stop or continue. If you choose to continue, you flip it 10 more
times. In those 10 flips, each time it yields head, you get $1, and each time it yields tail, you lose $1.

(a) [1 pt] What is the expected value of your earnings if continuing to play with a head-biased coin?

10 · (0.8 · 1 + 0.2 · −1) = 6

(b) [1 pt] What is the expected value of your earnings if continuing to play with a tail-biased coin?

10 · (0.8 · −1 + 0.2 · 1) = −6

(c) [3 pts] Suppose the first flip comes out head.

(i) [1 pt] What is the posterior probability that the coin is head-biased? 4/5

P (hb|heads)
P (tb|heads)

=
P (heads|hb)P (hb)/P (heads)

P (heads|tb)P (tb)
=
P (heads|hb)P (hb)

P (heads|tb)P (tb)
=

(.8) · (1/2)

(.2) · (1/2)
= 4 (1)

Thus P (hb|heads)
P (hb|heads)+P (hb|tails) = 4

1+4 = 4
5 .

(ii) [1 pt] What is the expected value of your earnings for continuing to play? 4
5 · 6 + 1

5 · −6 = 3.6

(iii) [1 pt] Which is the action that maximizes the expected value of your earnings?  Continue # Stop

(d) Suppose the first flip comes out tail.

(i) [1 pt] What is the posterior probability that the coin is tail-biased? 4/5

(ii) [1 pt] What is the expected value of your earnings for continuing to play? -3.6

(iii) [1 pt] Which is the action that maximizes the expected value of your earnings? # Continue  Stop

(e) [1 pt] What is the expected value of your earnings after playing the game optimally one time?

0.5 · 3.6 + .5 · 0 = 1.8

(f) [3 pts] Suppose again that the first flip yields head. The dealer knows which coin you picked. How much are
you willing to pay the dealer to find out the type of the coin?

6/5 You only change your action (from continue to stop) if the dealer tells you the coin is tails biased.
The probability that it’s a tails-biased coin is 1/5. The expected returns from a tails-biased coin is −6, so your
payout improves by 6 by switching from continue to stop. So the answer is 1

5 · 6.
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Q6. [12 pts] Bayes Net Modeling
Abhishek has been getting a lot of spam recently(!) and is not satisfied with his email client’s Naive Bayes spam
classifier. Thankfully he knows about Bayes Nets and has decided to implement his own spam classifier. It is your job
to help him model his Bayes Nets and train them. The following are 4 Bayes Nets he is considering. Each variable
can take on the values {0, 1}.

Y

X1 X3X2

Y

X1 X3X2

Y

X1 X3X2

(A) (B) (D)

Y

X1 X3X2

(C)

(a) [6 pts] Abhishek wants to know how much memory he needs to store each of these Bayes Nets on disk. The
amount of memory depends on the number of values he would need to store in the CPTs for that Bayes Net.
For each of the nets above give the least number of parameters he would need to store to completely specify
the Bayes Net.

A = 7

B = 11

C = 11

D = 15

The number of parameters in the Bayes Net is the total number of probability values you need in the CPTs of
the Bayes Net. You also need to remember that if A takes k values, P (A) can be represented by k − 1 values
as the last value can be chosen so that the probabilities sum to 1. For example in (A), P (X1|Y = 0) has 1
parameter and so does P (X1|Y = 1) and thus total number of parameters are 2 + 2 + 2 + 1 = 7

(b) It’s now time to train the Bayes Nets. Abhishek has training datasets Dl, Dm, Ds and a test dataset Dt. The
number of training examples in each set vary as |Dl| > |Dm| > |Ds|. etr and ete represent train and test errors
and their arguments represent which dataset a model was trained on. For example, etr(A,Dl) refers to the
training error of model A on dataset Dl.

(i) [4 pts] Abhishek tries a bunch of experiments using model D. In a typical scenario1 , which of the following
can be expected to be true? (Mark all that apply)

 etr(D,Dl) ≥ etr(D,Dm) ≥ etr(D,Ds)

# etr(D,Ds) ≥ etr(D,Dm) ≥ etr(D,Dl)

# ete(D,Dl) ≥ ete(D,Dm) ≥ ete(D,Ds)

 ete(D,Ds) ≥ ete(D,Dm) ≥ ete(D,Dl)

# etr(D,Dl) ≥ ete(D,Dl)

 etr(D,Dl) ≤ ete(D,Dl)

# etr(D,Ds) ≥ ete(D,Ds)

 etr(D,Ds) ≤ ete(D,Ds)

1Train and test data sampled from same underlying distribution
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(ii) [2 pts] Abhishek is now trying to compare performance across different models. In a typical scenario,
which of the following can be expected to be true? (Mark all that apply)

 etr(A,Dl) ≥ etr(B,Dl) ≥ etr(D,Dl)

# etr(A,Dl) ≤ etr(B,Dl) ≤ etr(D,Dl)

 ete(A,Dl) ≥ ete(B,Dl) ≥ ete(D,Dl)

# ete(A,Dl) ≤ ete(B,Dl) ≤ ete(D,Dl)

The rationale is to test knowledge about “power” of a model and overfitting/underfitting. Bayes Nets with less
number of parameters have low capacity/power as they can model a more restricted class of distributions due
to greater independence assumptions. A more powerful model would overfit on less data and a weak model
would underfit. In this question, we are assuming that Dl is very large. Rationale for correct answers(column
major):

(i) - 1: A larger dataset would be tougher to model than a smaller. Thus training error would be greater for a
larger dataset.

(i) - 4: A smaller dataset would overfit for a complex model like D and thus testing errors would be more.

(i) - 6: Training error less than test error in general because we explicitly model the training data and need to
generalize to test data.

(i) - 8: Overfitting for smaller data and complex model

(ii) - 1: Weaker model underfits on large dataset

(ii) - 3: Same as above. Weaker model cant model the distribution well enough if we have a lot of data.
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Q7. [20 pts] Most Likely Estimates in HMMs

X
1

E
1

X
2

E
2

X
3

E
3

. . .

The Viterbi algorithm finds the most probable sequence of hidden states X1:T , given a sequence of observations
e1:T . Throughout this question you may assume there are no ties. Recall that for the canonical HMM structure, the
Viterbi algorithm performs the following dynamic programming2 computations:

mt[xt] = P (et|xt) max
xt−1

P (xt|xt−1)mt−1[xt−1]

(a) [3 pts] For the HMM structure above, which of the following probabilities are maximized by the sequence of
states returned by the Viterbi algorithm? Mark all the correct option(s).

# P (X1:T ) # P (XT |eT )  P (X1:T |e1:T )

 P (X1:T , e1:T )  P (X1)P (e1|X1)

T∏
t=2

P (et|Xt)P (Xt|Xt−1) # P (X1)

T∏
t=2

P (Xt|Xt−1)

# None of the above

The sequence of states returned by the Viterbi Algorithm maximizes the conditional = P (X1:T |e1:T ). Since, P (e1:T )
is just a constant, P (X1:T , e1:T ) ∝ P (X1:T |e1:T ). Hence, the full joint P (X1:T , e1:T ) is also maximized. The third

option P (X1)P (e1|X1)

T∏
t=2

P (et|Xt)P (Xt|Xt−1) == P (X1:T , e1:t) due to the conditional independences implied by

the HMM structure; therefore, this is also maximized.

(b) Consider an HMM structure like the one in part (a) above. Say for all time steps t, the state Xt can take on
one of the three values {A,B,C}. Then, we can represent the state transitions through the following directed
graph, also called a Trellis Diagram.

A

B

C

A

B

C

A

B

C

t = 1 t = 2 t = 3

A

B

C

t = T

. . .

. . .

. . .

S G

t = 0

We wish to formulate the most probable sequence of hidden state query as a graph search problem.

Note in the diagram above, dummy nodes S and G have been added to represent the start state and the goal
state respectively. Further, the transition from the starting node S to the first state X1 occurs at time step
t = 0; transition from XT (the last HMM state) to the goal state G occurs at time step t = T .

(The questions for this section are on the following page)

2 If you’re not familiar with dynamic programming, it is essentially a recursive relation in which the current value is defined as a
function of previously computed values. In this case, the value at time t is defined as a function of the values at time t− 1

14



Definition : Let wtY→Z , be the cost of the edge for the transition from state Y at time t to state Z at time
t+ 1. For example, w1

A→B is the cost of the edge for transition from state A at time 1 to state B at time 2.

(i) [3 pts] For which one of the following values for the weights wtY→Z , 1 ≤ t < T , would the minimum cost
path be exactly the same as most likely sequence of states computed by the Viterbi algorithm.

# wtY→Z = −P (Xt+1 = Z|Xt = Y ) # wtY→Z = −P (et+1|Xt+1 = Z)P (Xt+1 = Z|Xt = Y )

# wtY→Z = − log(P (Xt+1 = Z|Xt = Y ))  wtY→Z = − log(P (et+1|Xt+1 = Z)P (Xt+1 = Z|Xt = Y ))

# wtY→Z =
1

P (Xt+1 = Z|Xt = Y )
# wtY→Z =

1

P (et+1|Xt+1 = Z)P (Xt+1 = Z|Xt = Y )

We want the solution to maximize the joint P (X1:T , e1:T ) = P (X1)P (e1|X1)

T∏
t=2

P (et|Xt)P (Xt|Xt−1).

Since, a search algorithm minimizes the cost, we want to pose this problem as a minimization problem.

Hence, we can equivalently say that we want to minimize
1

P (X1)P (e1|X1)
∏T
t=2 P (et|Xt)P (Xt|Xt−1)

.

A search algorithm in its native form can only work with additive costs. Therefore, to turn the above
products of probabilities into sums, we take the log.

Hence, we wish to minimize :

log

(
1

P (X1)P (e1|X1)
∏T
t=2 P (et|Xt)P (Xt|Xt−1)

)
= − log

(
P (X1)P (e1|X1)

T∏
t=2

P (et|Xt)P (Xt|Xt−1)

)

= − log (P (X1)P (e1|X1))−
T∑
t=2

log (P (et|Xt)P (Xt|Xt−1)).

If for t > 1, the edge cost is set to − logP (et+1|Xt+1 = Z)P (Xt+1 = Z|Xt = Y ), we get the above as
the total cost of the path.

(ii) [3 pts] The initial probability distribution of the state at time t = 1 is given P (X1 = Y ), Y ∈ {A,B,C}.

Which one of the following should be the value of w0
S→Y , Y ∈ {A,B,C}— these are the cost on the edges

connecting S to the states at time t = 1?

# w0
S→Y = −P (X1 = Y ) # w0

S→Y = −P (e1|X1 = Y )P (X1 = Y )

# w0
S→Y = − log(P (X1 = Y ))  w0

S→Y = − log(P (e1|X1 = Y )P (X1 = Y ))

# w0
S→Y =

1

P (X1 = Y )
# w0

S→Y =
1

P (e1|X1 = Y )P (X1 = Y )

# w0
S→Y = α, α ∈ R : (some constant)

The reasoning is essentially the same as the previous question. One exception is that for the first node
X1, there is no state transition probability. Instead, we use the prior P (X1). Therefore, we modify the
answer to the previous question to use the prior probability instead.
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(iii) [3 pts] Which one of the following should be the value of wTY→G, Y ∈ {A,B,C} — these are the cost on
the edges connecting the states at last time step t = T to the goal state G?

# wTY→G = −P (XT = Y ) # wTY→G = −P (eT |XT = Y )P (XT = Y )

# wTY→G = − log(P (XT = Y )) # wTY→G = − log(P (eT |XT = Y )(P (XT = Y ))

# wTY→G =
1

P (XT = Y )
# wTY→G =

1

P (eT |XT = Y )P (XT = Y )

 wTY→G = α, α ∈ R : (some constant)

As long as the costs on all the three edges : wTA→G, w
T
B→G, w

T
C→G is the same, we will get the optimal

answer. Note, it does not matter if the constant α is postive or negative because the total probability is only
scaled by a positive constant = eα (that is, the total cost of the path is (sum of all log probabilities)
+ wTY→G(== α). When you exponentiate this to get the probabilities, you get esum of log probabilities ∗ eα
— which is just a scaling by some positive number).
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(c) We consider extending the Viterbi algorithm for finding the most likely sequence of states in modified HMMs.

For your convenience, the computations performed by the Viterbi algorithm for the canonical HMM structure,
like in part (a), are repeated below:

mt[xt] = P (et|xt) max
xt−1

P (xt|xt−1)mt−1[xt−1]

(i) [4 pts] Consider the HMM below with additional variables Ut. The HMM can be interpreted as : The state
Xt at time t is caused due to some action Ut and previous state Xt−1. The state Xt emits an observation
Et. Both Ut and Xt are unobserved.

X
1

E
1

X
2

E
2

X
3

E
3

. . .

U
1

U
2

U
3

We want to find the most likely sequence of states X1:T and actions U1:T , given the sequence of observa-
tions e1:T . Write a dynamic programming update for t > 1 analogous to the one for the canonical HMM
structure.

mt[xt, ut] = P (et|xt)P (ut) maxxt−1,ut−1 P (xt|ut, xt−1)m[xt−1, ut−1]

(ii) [4 pts] Consider the HMM below with two emission variables at each time step Ft and Et.

Et is observed while Xt and Ft are unobserved.

X
1

X
2

X
3

. . .

E
3

F
3

E
2

F
2

E
1

F
1

We want to find the most likely sequence of states X1:T and the unobserved emissions F1:T , given the
sequence of observations e1:T . Write a dynamic programming update for t > 1 analogous to the one for
the canonical HMM structure.

mt[xt, ft] = P (et|xt)P (ft|xt) maxxt−1,ft−1 P (xt|xt−1)m[xt−1, ft−1]

17


